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#aucrcravity Gradiometer Conference Presentations
'
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Enclosed please find the 1986 Gravity Gradiometer Conference Presentations.
I would like to apologize for taking my time in getting this out to you.

I know a year late is a long time after my promised April 86 delivery.

For those of you who are attending this years' conference, please remind
me of how long it took, so I'll be embarrassed enough to get it out more
promptly.

The experiment I tried with the “"Question/Answer Sheets” was a partial
success. However, as with any experiment there was experimental error.

. Some data points are missing, which leads me to believe that I did not
stress the importance of experiment sufficiently to everyone. To all
those speakers who may feel that their responses were not accurately
recorded, you'll have to blame me. It is my hope, though, that no bias
was introduced into the experiment. It was my conclusion that most
errors were of a random nature and have not detracted from the resulting
compilation. You will also have to blame me for typo's, spelling,
grammatical errors and any other mistakes that went uncorrected. 1In some
cases, I have altered the wording of the questions or responses for
clarity.

Thank You for yopr patticipation at the l4th Gravity Gradiometer Conference.
—Ter dak, Capt, USAF

Geodesy and Gravity Branch
Earth Sciences Division
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Tuesday 11
0730
0745
0800
0810

0830
0900
0920

‘ 0945

1000

1030
1050
1110

1145
1200
1315

1330

1350

AGENDA

Fourteenth Gravity Gradiometry Conference
United States Ailr Force Academy
Colorado Springs, Colorado

February

Buses depart USAFA Officers' Club for Fairchild Hall

Registration - 3rd floor Fairchild Hall, South End

Welcome/Introduction - 1Lt Terry J Fundak

Opening Remarks - Dr. Donald H. Eckhardt

- " Development Experience of a Moving Base Gravity Gradiometer and
Discussion of Future Applications”
Mr. Ernest H. Metzger

- " Gradiometry & Geodesy, or Separating Inseparables "
Dr. Christopher Jekeli

- " Requirements for the use of Airborne Gradiometry in Exploration
Geophysics ”
Dr. Klaus-Peter Schwarz

- Break

- " Applications of Superconducting Gravity Gradiometer System toward
Inertial Guidance and Fundamental Science '
Dr. Hinghung A. Chan, Dr. Martin Vol Moody, Dr. Ho Jung Paik*

- " Quick Review of Gradiometer-Aided Land Navigation”
Dr. Warren G. Heller

- " Efficient Gravity Gradient Data Gathering "
Mr. Michel Bilello*, Dr. John B. Breakwell, Dr. Daniel B. DeBra

- " Use of Terrain Elevation Data in Airborne Gradiometry "
Dr. Julian L. Center, Jr.

Buses depart Fairchild Hall for USAFA Officers' Cludb

Luncheon - Officers' Club

Buses depart Officers' Club for Fairchild Hall

"

" The Gravity Gradiometer Survey System
1Lt Terry J. Fundak

- " Airborne Gravity Gradiometer Data Processing °’
Dr. William J. Hutcheson
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1430
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1525

1545

1615

1630

Wednesday

0800

0810

0825

0845

0910

0930

0945

1015

1040

Isomorphic Geodetic and Electrical Networks: An Application to
the Analysis of Alrborne Gravity Gradiometer Survey Data "
Dr. Donald H. Eckhardt .

Stage II Processing of Airborne Gravity Gradiometer Data using

Frequency Domain Techniques " ¢
Mr. Anthony A. Vassiliou

- Break
-~ " Karhunen-Loeve Gravity Gradiometer Data Processing " ¢
Dr. Sam C. Bose
- " Gravity Gradiometer (GGSS) Test Planning and Test Data Treatment”
Dr. Warren G. Heller
~ " Gradient Integration Procedure for Path Error Reduction "
Mr. Alan E. Rufty
- Buses depart Fairchild Hall for USAFA Officers' Clubd
- Reception - USAFA Officers' Club
12 February
- Buses depart USAFA Officers' Club for Fairchild Hall ‘
- " NASA Requirements for a Spaceborne Gravity Gradiometers - An Overview °*
Mr. Charles J. Finley, Dr. David E. Saith
Presented by Mr. Werner D. Kahn
- " Gravity Field Fine Structure Mapping using a Spaceborne
Gravity Gradiometer "~
Mr. Werner D. Kahn
- " Superconducting Gravity Gradiometer on the Space Shuttle "
Dr. Samuel H. Morgan, Mr. Joe R. Parker*
- " Development of Superconducting Gravity Gradiometer for Space
Applications "
Dr. Hinghung A. Chan, Dr. Martin Vol Moody*, Dr. Ho Jung Paik
- Break
- " Platform Requirements and Error Compensation for a Superconducting ‘
Gravity Gradiometer "
Dr. Ho Jung Paik
-~ " TLC for a Magnetically Floated Gravity Gradiometer "
Dr. Dave Sonnabend s

" Development of a High-Sensitivity Non-Cryogenic Gravity

Gradiometer for Spaceborne Use
Dr. F. Bordoni, Dr. F. Fuligini*, Dr. B. V. Iafolla,
Dr. Earico C. Lorenzini




1110 - " Common Mode Balancing Gradiometer with Monocrystalline Silicon
Suspension for High Sensitivity Gravity Measurements "
Dr. Jean-Paul Richard

1140 - " Liquid-Supported Torsion Balance as a Gradiometer"”
Dr. James E. Faller, Mr. Paul T. Keyser*

1210 - Closing Remarks

1Lt Terry J Fundak
1230 - Buses leave for lunch at USAFA Officers' Club

1345

Tour of Air Force Academy




Conference Participants by Organizational Affiliation

Organization

Aero Services

Alr Force 6585th Test Group

Alr Force Geophysics Laboratory

Air Force Intelligence Service

Applied Sciences Analytics

Barringer Resources

Bell Aerospace Textron

The Charles Stark Draper
Laboratory

Colorado School of Mines

Defense Mapping Agency

Dynamics Research Corp

Geodynamics Corp

Geospace Corp

Honeywell Inc.

Istituto di Fisica dello
Spazio Interplanetario

Jet Propulsion Laboratory

Johns Hopkins University

Applied Physics Laboratory

Name

Richard 0. Crosby
Richard Pearson

*Don Eckhardt
*Terry Fundak
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Andy Lazarewicz
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J. Edward Jones
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Anthony Barringer
George Hinton

*illiam John Hutcheson
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*Ernest Metzger
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Louis Pfohl

John White
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Harry Emrick
Richard Hansen
Randy Smith

B. Louis Decker
John J. Graham

Don Benson
Alan Zorn

Chris Harrison
Stan Jordan
*Julian Center
Scott Peacock

Michael Hadfield

*Franco Fuligni

*Dave Sonnabend

Jonathan Howland
Paul Zucker
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Astrophysics Jim Paller
NASA/Goddard Space Flight Center *Werner D. Kahn

NASA/Marshall Space Flight Center *Joe Parker

National Bureau of Standards Donald McDonald
National Oceanic and Atmosphere Robert Moose
Administration

Naval Surface Weapons Center Peter Ugincius

*Alan Rufty

Nortech Surveys Gerald Lachapella
Smithsonian Astrophysical Enrico Lorenzini
Observatory
Stanford University *Michel Bilello

John Breakwell

Dan DeBra
The Analytic Sciences Corp *Warren Heller
University of Calgary *Klaus-Peter Schwarz

*Anthony Vassiliou
University of Maryland *Ho Jung Paik

*M. Vol Moody

*Jean~Paul Richard
University of Texas Wayne Peeples

U.S. Army Engineer Hans Baussus von Luetzow
Topographic Laboratories

U.S. Geological Survey Lin Cordell
Thomas Hildenbrand
Larry Beyer

U.S. Navy Oceanographic Office Don Parker
Jim Strauss

U.S. Navy Strategic Systems Bernard Epstein
Program Office

* indicates conference speaker
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Geospace Systems Corp

Air Force 6585th Test Group
University of Texas

Bell Aerospace Textron
University of Maryland

Air Force Geophysics Laboratory
Naval Surface Weapons Center
Air Force Geophysics Laboratory
University of Calgary

Defense Mapping Agency

Jet Propulsion Laboratory

U.S. Naval Oceanographic Office
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Naval Surface Weapons Center
University of Calgary

Bell Aerospace Textron

Dynamics Research Corp

Johns Hopkins University/Applied Physics Laboratory




Papers presented at the

1l4th Gravity Gradiometry Conference

1. *Mr. Ernest H. Metzger
Bell Aerospace Textron

2. *Dr. Christopher Jekeli "
Air Force Geophysics Labdb

3. *Dr. Klaus-Peter Schwarz
University of Calgary

JA.*Dr. Warren G. Heller "
The Analytic Sciences Corp

4. *Dr. Ho Jung Paik "
Dr. Martin Vol Moody
Dr. Hinghung A. Chan
University of Maryland

5. *Mr. Michel Bilello "
Dr. John B. Breakwell
Dr. Daniel B. DeBra
Stanford University

6. *Dr. Julian L. Center, Jr.
Geospace Corp.

7. *1Lt Terry J. Fundak
Air Force Geophysics Lab

8. *Dr. William J. Hutcheson
Bell Aerospace Textron

9. *Dr. Donald H. Eckhardt "
Air Force Geophysics Lab

10. *Mr. Anthony A. Vassiliou
University of Calgary

11. *Dr. Sam C. Bose
Applied Sciences Analytics

12. *Dr. Warren G. Heller
The Analytic Science Corp

13. *Mr. Alan E. Rufty

" Development Experience of a Moving Base Gravity

Gradiometer and Discussion of Future Applications”

Gradiometry & Geodesy, or Separating Inseparables”

" Requirements for the use of Airborne Gradiometry

in Exploration Geophysics”

Quick Review of Gradiometer-Aided Land Navigation”

Applications of Superconducting Gravity
Gradiometer System toward Inertial Guidance
and Fundamental Science”

Efficient Gravity Gradient Data Gathering”

" Use of Terrain Elevation Data in Airborne

Gradiometry”

" The Gravity Gradiometer Survey Svstem"”

" Airborne Gravity Gradiometer Data Processing”

Isomorphic Geodetic and Electrical Networks:
An Application to the Analysis of Airbornme
Gravity Gradiometer Survey Data '

" Stage II Processing of Airborne Gravity

Gradiometer Data using Frequency Domain Techniques ~

Karhunen-Loeve Gravity Gradiometer Data Processing ~

" Gravity Gradiometer (GGSS) Test Planning and Test
Data Treatment "

" Gradient Integration Procedure for Path Error Reduction

Naval Surface Weapons Center

14. Dr. David E. Samith
Goddard Space Flt Ctr
Mr. Charles J. Finley
NASA Headquarters

NASA Requirements for a Spaceborne Gravity Gradiometer
~ An Overview "

(Presented by *Mr. Werner D. Kahn)
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16.

17.

18.

19.

20.

21.

22.

* indicates conference speaker

*Mr. Werner D. Kahn

Goddard Space Flt Ctr

Dr. Samuel H. Morgan
*Mr. Joe R. Parker
Marshall Space Flt Ctr

Dr. Hinghung A. Chan

*Dr. Martin Vol Moody
Dr. Ho Jung Paik
University of Maryland

*Dr. Ho Jung Paik
University of Maryland

*Dr. Dave Sonnabend
Jet Propulsion Lab

*Dr. Jean-Paul Richard
University of Maryland

*Mr. Paul T. Keyser
Dr. James E. Faller

" Gravity Field Fine Structure Mapping using a
Spaceborne Gravity Gradiometer "

Superconducting Gravity Gradiometer on the Spac.
Shuttle”

L 4

" Development of Superconducting Gravity Gradiometer
for Space Applications °*

" Platform Requirements and Error Compensation for a
Superconducting Gravity Gradiometer "

" TLC for a Magnetically Floated Gravity Gradiometer "
" Common Mode Balancing Gradiometer with
Monocrystalline Silicon Suspension for High

Sensitivity Gravity Measurements "

" Liquid-Supported Torsion Balance as a Gradiometer"”

Joint Institute for Lab Astrophysics

Dr. Enrico C. Lorenzint

Smithsonian Astrophysical

Observatory

" Development of a High-Sensitivity, Non-Cryogenic

Gravity Gradiometer for Space-borne Use " .

*Dr. Franco Fuligini (Presently at SAO)

Dr. B. V. lafolla
Dr. F. Bordoni

Istituto di Fisica dello

Spazio Interplanetario




DEVELOPMENT EXPERIENCE OF A MOVING BASE GRAVITY GRADIOMETER
AND DISCUSSION OF FUTURE APPLICATIONS

E. H. Metzger
Bell Aerospace Textron
P. O. Box One
Buffalo, NY 14240

ABSTRACT
A summary of the development experience of the rotating accelerometer

gravity gradiometer from its conception to reduction to practice yielding
accurate measurements aboard a moving vehicle is presented. Potential future
applications of moving base gravity gradiometers are outlined and the techni-

cal difficulties to achieve these objectives are discussed.
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RECORDING OF DATA OBTAINED DURING MASS DETECTION EXPERIMENT
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PAPER TITLE: DEVELOPMENT EXPERIENCE OF A MOVING BASE GRAVITY GRADIOMETER
AND DISCUSSION OF FUTURE APPLICATIONS

‘PEAKERS NAME: Ernest H. Metzger
- Questions and Comments:

Milton Trageser: I have never seen data which show your Gradiomezer's quick time
response and noise. Can you show some data on this?

“~ SPEAKERS RESPONSE: (No Response Noted)

Daniel DeBra: What is/are the principle hardware differences in the Navizition
GGS and the Mapping GGS?

SPEAKERS RESPONSE: The Mapping GGS is more sensitive. The accelerometers

have fewer turns on the proof mass to require more A/g (Amperes per uniz of gravisv).
Tis has produced a significantly better signal to noise ratio. It is not needed for
the navigation application.
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. GRADIOMETRY AND GEODESY, OR SEPARATING INSEPARABLES

C. Jekeli
Alr Force Geophysics Laboratory
Earth Sciences Division

Hanscom AFB, MA 01731-5000

ABSTRACT

The purpose of geodesy is to determine the size and shape of the earth and to deter-
mine the exterior gravity field. These two facets of geodesy are tightly interwoven.
In fact, a knowledge of the gravity field is a prerequisite for terrestrial position-

ing, and vice versa. 1in the most comprehensive solutions (integrated geodesv), both

‘re determined simultaneously from all available measurements.

Two methodolagies being proposed for rapid local gravity mapping are airborne gravime-
try and airborne gravity gradiometry. In addition to the classic chicken-egg problem
mentioned above, there is the problem that airborne gravity instruments sense not

only gravity (gravity gradients) but also various effects of an accelerated coordinate

frame.

A rudimentary analysis shows how gravity gradiometry mitigates these problems of

inseparability.




GRADIQMETRY & GEODESY, OR SEPARATING INSEPARABLES

PROBLEMS OF MOVING-BASE G6RAVITY MAPPING:

INSTRUMENTS IN AN ACCELERATED FRAME

GRAVITY FIELD IS A FUNCTION OF POSITION

SIMPLIFIED ANALYSIS:

USE SPHERICAL APPROXIMATION

LINEARIZE OBSERVATIONAL MODEL

ASSUME LOCAL LEVEL STABILIZATION

ASSUME NO HORIZONTAL ACCELERATIONS, CONSTANT ALTITUDE

GRAVITY (GRAVITY GRADIENT) DETERMINATION AT ALTITUDE TO

ACCURACY OF 1 MGAL (1 E)
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GENERALIZED GEODETIC BOUVDARY CONVNDITION:

OBSERVED GRAVITY ANOMALY -

T

v

Q)

|

- X 2
rT-f-‘?:bW -

Ag,=’

o

— LIVEAR FUMNCTIONAL OF T TPLVUS Aw

OBSERVED QUANTITY :

AT
2r

3 3.
AE%—?Aa’: *or

~-LINEAR FunNCcTiovaL OF T ownLy
- AVOID HEIGHT DATUM PROBLEM o

SATELLITE GRADIOMETRY

OBSERVED QUANTITY !

1T
Or;, 92y
QI.T /Jtr
D(_;x’br'v, = Ix~> 3(11— -

— LINNEAR FUACTIONALS OF T oagy

- AVo(D COHPLICATED ORPBIT ‘
DETERMINAT ION




REQUTIREMENTS FOR THE USE OF AIRBORNE

GRAVITY GRADIOMETRY IN GEOPHYSICAL EXPLORATION

- K. P. Schwarz
A. A. Vassiliou
The University of Calgary
Division of Surveying Engineering
2500 University Drive N.W.
Calgary, Alberta T2N 1N4
CANADA
ABSTRACT
Gravity methods in geophysical exploration exploit the fact that density
‘riations in rocks give rise to variations in the anomalous gravity potential.
Interpretation of these variations gives information on rock formations that
may be of geophysical interest. The anomalous gravity potential of some
typical formations are specified in terms of wavelengths and amplitude and
the requirements for resolving these signals by single axis or multi-axis
gravity gradiometers are stated. Simple numerical examples are used to show
the effect of downward continuation, aliasing, and profile spacing. Finally,
the noise spectra of current gravity gradiometers are discussed with view to

their potential use in these applicatiouns.




REQUIREMENTS
FOR THE USE OF AIRBORNE
~ GRAVITY GRADIOMETRY IN GEOPHSICAL

EXPLORATION
by

@ K.P. SCHWARZ AND A.A. VASSILIOU
UNIVERSITY OF CALGARY
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MaJor

GRAVITY METHODS IN EXPLORATION

EXPLORATION AREAS
PETROLEUM EXPLORATION
MINERAL EXPLORATION

WATER RESOURCE EXPLORATION

EXPLORATION METHODS
SEISMIC (PETROLEUM)
ELECTROMAGNETIC (MINERAL)
MAGNETIC

GRAVIMETRIC

GRAVITY METHODS

COMPLEMENT SEISMIC AND ELECTROMAGNETIC METHODS
ARE INEXPENSIVE

GIVE MULTIPLE SOLyTIONS (NON-UNIQUENESS OF
POTENTIAL METHODS

GIVE LITTLE GEOMETRIC INFORMATION
ARE SLOW

ADVANTAGES OF AIRBORNE GRAVITY GRADIOMETRY

MORE COMPLETE INFORMATION (FuLL TENSOR)
HIGHER RESOLUTION POSSIBLE

FASTER DATA ACQUISITION

LARGER AREAS

IDEAL COMBINATION WITH AEROMAGNETICS

INTEGRATED APPROACH




APPROACH

REQUIREMENTS IN TERMS OF WAVELENGTH AND AMPLITUDE

TYPICAL STRUCTURES
* RESULTING WAVELENGTHS AND AMPLITUDES

SIGNAL DETECTION AT FLYING ALTITUDE

* ATTENUATION OF SECOND-ORDER GRADIENTS
WITH ALTITUDE

* DETECTABILITY OF OFF-PROFILE SOURCES
GEOLOGICAL AND TOPOGRAPHICAL NOISE
* SAMPLING RATE AND MEASURING ACCURACY

DOWNWARD CONTINUATION

AMPLIFICATION OF NOISE
* RECOVERY OF DESIRED SIGNALS

USE OF CURRENT AND FUTURE SYSTEMS

* CURRENT ROOM TEMPERATURE SYSTEMS

* FUTURE ROOM TEMPERATURE SYSTEMS
CURRENT SUPERCONDUCTING SYSTEM
FUTURE SUPERCONDUCTING SYSTEM




OIL TRAPS

IN SEDIMENTARY STRUCTURES

SALT DOME

GAS

__,?—\\

ANTICLINE

/

%”_

FAULT TRAP

CAP-
ROCK

oiL

WATER

SHALE

— WY
WATER W//f

-—

LIMESTONE REEF

[ —

PINCHOUT

=

UNCONFORMITY TRAP




TYPICAL WAVELENGTHS AND AMPLITUDES

STRUCTURE 'RANGE . GRAVITY MeTHODS
WAVELENGTH AMPLITUDE UseruL?
SALT DOME 3 -10 km 5 -30E Yes
ReEF 0.5- 5 km 0.3- 5 E OFTEN
|
ANTICLINE 3 -15«m 3 -10E Yes
FauLT l - 5m 1 -30E Yes
PINCHOUT 1 - 5 km l1 - S5E ONLY IF DENSITY
CONTRAST 1S
UNCONFORMITY l - 5km l1 -10E SUFFICIENT
| ORE BODY 0.3-0.5kM 0.5-100E Yes

*

SIGNAL AMPLITUDE AND WAVELENGTH AT THE SURFACE
OF THE EARTH,




STRONG ATTENUATION WITH ALTITUDE
ExampLE : ORE BODY

Depth : 200 m below ground
redius=100m
density contrast = 1.0 gr/cmee3
flying altitude = 0.0 m
Profile * across center

]
40 iE
20 sz,i
. M)
S P -
07 1-» HH
-20 - 2z
-40 §
-60
_{ H
A B B L B B

1
(o))

-4 -2 0 2 4 6 (km

Depth t 200 m below ground
redius=100m
density contrast = 1.0 gr/cmee3
flying saltitude = 200.0 m
Profile * across center

(E)
? Txz )i
i /!
.
0 —mmm e
) HE]
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-4 — Y
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"12 LA S A B T v T ¥ 17 B
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WEAK ATTENUATION WITH ALTITUDE
ExaMPLE : FAULT TRAP

Example ¢ Fault trep
length=5.0 km , depth = 1.0 km
density contrest = 0.2 gr/cmeeJ

flying saltitude = 0.0 km

(E)
-
. ;
4 -
4 iR
2 __1 sz," Y
Pory N
y FE Se.e -
IS PRRSOTLLy I T
0 [ T;Q
1 T~ i
-2 - \\ ;
- \'J'
=4 =TT

-20 -10 0 10 20 30(km)

Exsmple ¢t Fault trep
length=5.0 km , depth = 1.0 km
density contrest = 0.2 gr/cmee3

flying sltitude = 0.2 knm

(E)
6
1
4 i
4 PR
. ..\‘
2% L TANEAN
;o h
-1 ."o ! t..‘ S ~———.
0 w—onsacesss’ ! ----------------
i L B G2
\‘\ .'
-2 - N\ /!
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-4 T

-20 -10 O 10 20(km)




POOR DETECTABILITY OF OFF-PROFILE SOURCES
ExampLe : OrRe BODY

Depth 3 200 m below ground
redius=100m
density contrast = 1.0 gr/cmee®3
flying altitude = 200.0 m
Profile ¢ 250 m of the center

(E]
2 ‘
i
1 Tkzi!
1!
0 ——o oo {.'-‘. 'i .,'°"":u .......
vif
-1 i
Tzz::‘;:"
-2 L
-3

:‘,'
A B B LA LN B R
-6 -4 -2 0 2 4 6 (km)

Depth ¢+ 200 m below ground
radlus=100m
density contrast = 1.0 gr/cmes3
flying sltitude = 200.0 m
Profile ¢t SO0 m of the center

(E)
0.8 E
0.4 1
' Tz
Loy e
E-07 et =T e
%ig/
-0.4 Bzl
1Y
-0.8

"1- 2' v 1T Y71 YT 1T 77T "1
-6 -4 -2 0 2 4 6 (km)

NoTE: LARGER STRUCTURES ARE MUCH BETTER TO DETECT. SOURCES AT A HORIZONTAL
DISTANCE OF FIVE TIMES THE SOURCE DEPTH CAN STILL BE SENSED,




DOWNWARD CCNTINUATION

FIGURE GIVES THE AMPLIFICATION FACTOR FOR WAVELENGTHS
RANGING FROM ABouT 10 xM (1) 710 0.4 xm (20)

downward continuation operator of Tzz

flying altitude = 200.0 m
grid spacing = 300.0 m
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SIGNAL DETECTION AT FLYING ALTITUDE

ATTENUATION: STRONG ATTENUATION OF SHORT WAVELENGTH SIGNALS

( < 0.5 kM) WITH ALTITUDE. IF A SPECIFIC FREQUENCY BAND 1S
WANTED, FLYING ALTITUDE CAN BE USED AS A LOW-PASS FILTER.

DETECTION OF OFF-PROFILE SIGNALS: MIXED GRADIENTS ARE USEFUL

TO DETECT SIGNAL SOURCES WHICH ARE NOT DIRECTLY BELOW THE
FLIGHT PROFILE. [N GENERAL, SIGNALS CAN STILL BE DETECTED AT
A HORIZONTAL DISTANCE THAT IS TWICE THE DEPTH OF THE SOURCE.
THIS WOULD FAVOUR A FULL TENSOR GRADIOMETER OVER A ONE AXIS
GRADIOMETER (Tzz).

NOISE REDUCTION

GeoLogIcAL NOISE: CAUSE BY 'UNWANTED' DENSITY CHANGES IN

THE UPPER CRUST. WAVELENGTHS AND AMPLITUDES ARE SIMILAR,
ELIMINATION ONLY POSSIBLE BY JOINT INTERPRETATION OF ALL
RELEVANT DATA,

TOPOGRAPHICAL NOISE: CAUSED BY SURFACE TOPOGRAPHY., AIRBORNE

MEASUREMENTS MUST BE REDUCED USING DEM AND DENSITY ASSUMPTIONS.
SMALLER FEATURES CAN BE FILTERED OUT BY FLYING ALTITUDE.
RESIDUAL SYSTEMATIC EFFECTS HAVE TO BE EXPECTED BUT WILL USUALLY
BE SMALLER THAN GEOLOGICAL NOISE.




SAMPLING RATE AND MEASURING ACCURACY

AssuMPTIONS : 10 DATA POINTS PER SMALLEST PERIOD
FLicHT speep : 100 knoTs
FLying HEIGHT : 200 m (660 fT)
SIGNAL TO NOISE RATIO : 5:1

STRUCTURE SAMPLING RATE MEASURING
(M) (s) Accuracy” (E)

SALT DOMES

ANTICLINES 300 - 1500 5 -30 y -7

ORE BODIES

PINNACLE REEFS 30- 50 0.6- 1.0 0.3-0.5

ALL OTHERS 100 - 500 2 -10 1.0-2.0

»

TO RESOLVE MINIMUM AMPLITUDE AT FLIGHT LEVEL.

DOWNWARD CONTINUATION

STRONG AMPLIFICATION OF NOISE AND SHORT WAVELENGTH FEATURES
MAKE THE INTERPRETATION OF THE DOWNWARD CONTINUED SIGNAL MUCH
MORE DIFFICULT., SIGNAL DETECTION AND INTERPRETATION AT FLYING
ALTITUDE ARE THEREFORE PREFERABLE. AVAILABLE GROUND GRAVITY
CAN BE UPWARD CONTINUED TO FACILITATE LONG WAVELENGTH DETECTION,




USE OF CURRENT AND FUTURE SYSTEMS

CURRENT ROOM TEMPERATURE (BELL SYSTEM)

Noise: 9 E Hz'15 ) .1 HZ AVERAGING

> LARGE SALT DOMES AND ANTICLINES
FLYING ALTITUDE OF 600 M 1S ACCEPTABLE FOR THESE FEATURES.

FUTURE ROOM TEMPERATURE

> LOWER NOISE LEVEL WITH ROOM TEMPERATURE SYSTEMS SEEMS
TO BE FEASIBLE. HOWEVER, NOISE REDUCTION HAS TO BE
ACCOMPANIED BY A HIGHER SAMPLING RATE, TO MAKE THEM
ADAPTABLE TO THESE APPLICATIONS,

CURRENT SUPERCONDUCTING (PAIK)

Noise: 0.7 E Hz™%, < 1 Hz saMPLING

> ALL SIGNALS OF EXPLORATION INTEREST ARE DETECTABLE

A ONE AXIS GRADIOMETER IS SUFFICIENT IF THE SIGNAL
SOURCE 1S DIRECTLY BELOW THE FLIGHT PASS. FuLL
TENSOR GRADIOMETER WOULD INCREASE CHANCES FOR
DETECTION OF OFF-PROFILE SOURCES.

FUTURE SUPERCONDUCTING

Noise: 0.07 Hz'g, < 1 Hz SAMPLING RATE

> OFFERS RESOLUTION OF MUCH SHORTER WAVELENGTHS AND

POSSIBLY NEW APPLICATIONS.,

HIGHER FLYING ALTITUDE AND WIDER PROFILE SPACING
POSSIBLE FOR EXPLORATORY SURVEY.




CONCLUSIONS

SPEED, RESOLUTION, AND AREA COVERAGE ARE DECISIVE
ADVANTAGES OF AIRBORNE GRADIOMETRY OVER CONVENTIONAL
GRAVITY EXPLORATION METHODS,

ATTENUATION OF GRADIENTS WITH HEIGHT IS A PROBLEM FOR
SHORT WAVELENGTH FEATURES. A FLYING ALTITUDE OF 200 M
IS REQUIRED TO RESOLVE WAVELENGTHS DOWN To 300 M.

CURRENT AND NEAR FUTURE SYSTEMS CAN RESOLVE MOST SIGNALS
IMPORTANT IN PETROLEUM PROSPECTING AT FLYING ALTITUDES
ofF 200 - 300 m.

FULL TENSOR SYSTEMS ARE BETTER THAN ONE AXIS SYSTEMS
FOR INTERPRETING SPECIFIC STRUCTURES AND FOR DETECTING
OFF-PROFILE SIGNALS.

ELIMINATION OF TOPOGRAPHICAL AND GEOLOGICAL NOISE 1S
NECESSARY TO < 0.5 E PER KM AT FLYING ALTITUDE,

SIGNAL DETECTION AT FLIGHT LEVEL IS PREFERABLE TO DOWNWARD
CONTINUATION,

SUPERCONDUCTING GRADIOMETERS ARE ADVANTAGEOUS IN THESE
APPLICATIONS BECAUSE OF HIGH SAMPLING RATE AND LOWER
NOISE LEVEL.




PAPER TITLE: REQUIREMENTS FOR THE USE OF AIRBORNE GRAVITY GRADIOMETRY
IN GEOPHYSICAL EXPLORATION

"EAKERS NAME: Klaus-Peter Schwarz
‘Questions and Comments:

Anthony R. Barringer: In airborne geophysical surveys it is quite normal
to fly at survey heights as low as 600 ft. However, turbulence increases a
great deal at these heights. What are your comments?

-
SPEAKERS RESPONSE: It may be possible to stabilize aircraft using wingtip
devices. The problem is appreciated and there is a trade-off between flving
height and turbulence problems.

Ho Jung Paik: 1If you have a gradiometer with higher sensitivity,
could you take advantage of the sensitivity and fly at a higher altitude to
suppress the air turbulence noise?

SPEAKERS RESPONSE: Yes, one can always take advantage of higher sensitivitv.
Dave Sonnabend: What is the effect of near surface features causing
gravity noise masking signals from deeper features - maybe we want to flv a

little higher.

SPEAKERS RESPONSE: Agree that one must optimize altitude; but even with full
tensor measured everywhere, cannot sort this out completelv.
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QUICK REVIEW OF GRADIOMETER-AIDED LAND NAVIGATION

W. G. Heller
The Analytic Sciences Corporation
One Jacob Way
Reading, MA 01867
ABSTRACT
Real-time inertial navigation compensation for gravity disturbances is one
of the most demanding applications of gradiometry. This discussion reviews the
potential contribution of existing gradiometer instruments to land navigation,
namely the benefits which.accrue to gravity vector estimation and inertial platfornm
tilt determination. Real-time gravity vector recovery accuracy is seen to be
strongly dependent on the quality of initialization gravity data, inertial svstem
and gradiometer accuracy as well as elapsed time from initialization. Position
.and velocity accuracy 1is observed not to be significantly enhanced with a
gradiometer. The sharp contrast between real-time determination of the
gravity field and the accuracy obtainable through post-traverse smoothing
motivates combining the gravity gradiometer measurements with gravity vector
map. The sensitivity of real-time gravity determination to gradiometer
errors also motivates further development of terrestrial gradiometer instruments

to achieve noise densities better than 1.0 E2/Hz.
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APPLICATIONS OF SUPERCONDUCTING GRAVITY GRADIOMETER SYSTEM

TOWARD INERTIAL GUIDANCE AND FUNDAMENTAL SCIENCE

. H. A. Chan
M. V. Moody
H. J. Paik
Dept of Physics and Astronomy
University of Maryland

College Park, Maryland 20742

ABSTRACT
In addition to the gravity survey application which is the primary objective

‘f the NASA program, the superconducting gravity gradiometer system can be used
as a gradiometer-aided inertial navigation system and as a detector for a series
of fundamental physics experiments both in the laboratory and in the earth orbit.

These applications will be discussed.




APPLICATIONS OF SUPERCONDUCTING GRAVITY
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L. Princple of Gravity and Acceleration [Measurement |

I. Precisson Crravi fy E)rfen'm-enf:\'
A. Null Test of R™ law o
B. Tests of Genera/ Relatvistc Effedtss

IL. Superwon dwdioi Gravity Gradiometer Systems
A. mebfy,ae Sufenonlqcﬁn/ Gradiomefer
B. Advanced 3-axis Suf-erwnduliy Gradiomete
C. 6-axis Suferwndwcﬁ'? Accele rometer

. Aff/f'ca fions of Suferundwdia Grcv}fy Crradiometers .

A. 5f4¢.¢born¢ and Pirborne an}fy S«Wey
8. Inerfial Guidance and AWitnde Stabiiization

( Colorads Sfra“d,;, Colorado )




Q. Prinu‘plc of Gravi fy and Acceleration Measurement

Specific force on a 577,7/4 proof mass:

gy = (%*),z
= —'V’ﬂ?,t)—ffx(fl'x 7) - 28ix (%';),t "(‘-’j‘—z)ﬂx r-aa)

=> Accelerafion and inwi/y cannot be dish'nlm‘:he{
[5)/ accelerometer)

v 57443 valence P”""iflt “

Differential  specific force measurements :
’
F;J- (7,¢) = l'{) (P ¢) - (n;fb"-ﬂ—’&j) + % €k Rr,
Symmedic com/nneaf‘ :

F(s'j) (?/ t)= r:)'lPot) - [.ﬂ.;n:,. -n? ‘J)

=> &r‘y;/y ?ndio'ncfar (2e0r ¢ Fho{' Masses)
Anﬁsymmln.c urnfoncnf‘i

@ r[’ijl (P t)= = Ejke e (t)

=D Angular acelerometer (4 proef masses)




I. Precision Grau fy Ex/en‘mu/.r

A.Null Test of R™ Law

Theorefical ohallen/es :
{Sufers)mmeﬁy => gmviﬁnas y 3r4-w'fbo/an
Unipel field fheory = axions, Goldsthne bosoy s, efe,

A -3
Vielahon of R~ law

Violafion of E1q3 valence Pma,pl.

Ey,ﬂer}mo’h/ Gha//enlcs .

Vielafion of R™2 Law (L-an}, Sh(&y)
Violafien of Eguimlence Frincple (Fischbach etal)

New Nyll Test of R+ Lo :
V2.¢ = l/.ﬂGrf

= Laborntory, geological scale, €arth-orbit
exper;men?ts
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Status of G and G(r) Measurements

Absolute & Measurements ( Cavend,sh EX/S-)
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B. Tests of General Relafivishe Effects

" Mn]ne be ¥ componsnt of gravify Jradkn/::
due +o Earth's rofaton (Braginsky ¢+ FPolnares):

3
(
([z}mc] = U'H)a x VE" % ; ‘P

>
=~ 2gMAOw. Ry
- T e R
(ﬂl)lnal x> 9’(/513.
(F)et ®

Anomalous resonant term (Mashhoon ¢ Theiss) :

[-2-3x -3dps») o

-GM |- .
[Zj" 2 ol f5in ) 1+3% 0
L © o ] J.
where = GM _ 2GT
Rec* R,?c‘w,,
- J
o

7:: T+ 70 = anomqlous resenence
L > orbit indinaton . ‘
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o, J ufenondaoﬁy Graw'ijy Grad;ometzr Sys fems

A. mebf:yfe Swperconducling Grnvty Gradiemeler

Performance : 0.7E Ha¥™ in certain frequenty
windows befow [ He

Error Modellin 7 => Noise specfrum understzod,

B. Advance / 3-axs S'?grgga’gm‘nl Gradiomeler
@

Performance . < ID."E ”2% aimed
Many error sources are Suppressed b)r

;m'onwed Jes?n.
Com,lef'e n.wiaqﬁon cqfqbiﬁ/y.

C. 6-axis Sgﬁmndu&ﬁn 4 Accele rometer

é -} -,
Performance : < 10 33; Ha b expesed
~i! -2, T
< 10 rad s He ¢
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3-AXIS SUPERCONDUCTING GRAVITY GRADIOMETER
DESIGN FOR ONE OF SIX IDENTICAL UNITS
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Proof mass (Niobium) Coil form (Macor ceramic)

(a) (b)

) z ‘y/Sensing coil
x - , ...... [ 2.3 ¢ ] —— x

Coils (24 sensing coils + 24 levitation coils)

(c)
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.,V. Applications of 5¢¢perwm(«cﬁ7 Cravity Grad omerers

»”

A. Spaceborne and Airbome Cravify Survey

Sface a,ff/i cafion : { D~‘~ /o"'e l/—,a“"' even fuely
Airbora-e aff/fcq,h'on N ID.’.‘V / £ //3-%'

B. Znertial Cruidance and Afhdude Stabili3atien

3-ax:s arae{;omefer and 6b-axis accelerometer

=) gnu/;omef’-cr’qudel INS.

Crradiomefer in synchronowus -€arth orbit
=> precision stabilyed platform.




PAPER TITLE: APPLICATIONS OF SUPERCONDUCTING GRAVITY GRADIOMETFER SYSTEM
TOWARD INERTIAL GUIDANCE AND FUNDAMENTAL SCLENCE

‘PEAKERS NAME: Ho Jung Paik
Questions and Comments:

Chris Harrison: The Stacey and EBtvOs experiments (as revised by Fischbach)
disagree by a factor of about 20. This is an order of magnitude disagreement.

SPEAKERS RESPONSE: Speaker thought I (Chris Harrison) was talking about the
Dicke experiment.

Milton Trageser: You showed a slide showing the response to the swinging
pendulum. Over how many pendulum swings was this average?

SPEAKERS RESPONSE: 500 swings --- 2000 second.

Paul Keyser: With regard to the inconsistency between Dicke and Fischback's
version of EGtvos, it is important to realize that Fischback's postulates a
short-range force so that only E0tvds' results ar applicable. It is also
important to note that Fischback left out a numbe. of data points which make
his curve less impressive, as 1 will mention in my talk.

Daniel DeBra: How can there be violation for characteristic lengths on
either side of Panov's data which claims no violation?

SPEAKERS RESPONSE: Panov's data doesn't overlay the length-sensitivityv where
inlation is claimed.




EFFICIENT GRAVITY GRADIENT DATA GATHERING

M. Bilello
J. B. Breakwell
D. B. DeBra
Department of Aeronautics and Astronautics
Stanford University

Stanford, California 94305

ABSTRACT
We are interested in how one can separate the variations in gravity field

from the measurement noise when making a survey. Given a survey pattern in
which the path of the instrument crosses itself (as it does in a series of

‘orthogonal tracks), there are a discrete number of instants at which the meas-
urements should be identical. We have examined a nﬁmber of different sequences
in generating the survey pattern to vary the times at which these identical
conditions occur. The conjecture was that an appropriate choice of pattern
could take advantage of the time characteristics of the measurement noise in
permitting a separation of noise from gravity data. We show the results as a
function of the correlation time of the measurement noise for a simple model of
the gravity field. For noise varying from uncorrelated to a correlation time
comparable to the survey time, the variation is approximately 10XZ. Large

« differences in accuracy of reconstruction do not appear likely since our results

give variation between paths of approximately 2% for two very dissimilar paths

through the same grid. Thus the conjecture has not been borne out.




Efficient Gravity Gradient Data Gathering .

Introduction

The modern interest in measuring gravity gradients began in the late 1950s motivated
by determining the vertical in a satellite. Early papers considering the analytical aspect g
of gradient determination were followed in the next decade by a number of innovative
approaches in how such an instrument might be built. The revolution in gradiometry was
to make the measurements in a moving vehicle and/or in a satellite without the gravity
needed for the geophysical pendulum instruments. An instrument developed at the Bell
Aerosystems was chosen for field application for improvements in navigation. This instru-
ment has been very successful in its early field tests and is in production for deployment.
As a result of this success for the navigation mission, the Defense Mapping Agency (DMA)
through the Air Force Geophysical laboratory (AFGL) began the modification of this in-
strument for gravity gradient measurements for gravity survey work. Many people have
subsequently contributed to the development of a survey plan and techniques for utilisa-
tion of such an instrument. In this paper we explore the possibility that given an area
to be surveyed and a track spacing that has been determined by the necessary resolution
of gravity data, there might be improvements in accuracy depending upon the form of a
grid pattern used in overflying the area. The conjecture is based on the fact that instru-
ment noise, whether described in the time domain or spectrally, may be different than the .
equivalent noise associated with gravity fields for a given velocity of the vehicle during the
survey. When a survey is performed with a grid in which tracks croes each other, there
are a discrete number of crossings at which the measurements should be the same in both
directions. Different patterns provide a different distribution in time of when these points
of identical measurement occur. It is this variation in the distribution and time which
could make a difference in being able to separate signal from noise.

Models

As indicated in the introduction, the spectral characteristics of the gravity field and
of the instrument will have an influence on the separability of the gravity information
from the instrument noise. With the amount of experimental data that exists from the
laboratory and early field trials, it would be possible to give a good model of the expected
noise from a gravity gradiometer. However, to investigate the potential for improvement
one can start with a much simpler model of the instrument noise and vary its parameters
to see whether or not significant improvements are possible. We have chosen the latter ap-
proach to investigate the feasibility of improvement with the expectation that if significant
improvements appear possible we would then improve the model using available empirical
data.

Spectral Characteristics of the Field

We have used a model of the gravity gradient field that allows us to determine the ‘
spatial correlations of the gravity gradient. (J.V. Breakwell [1]).

o e ———




Using an approximation of flat earth, we can write:

U(3,A) = e~ *U(d,0) where U(d,0) is the Fourier transform of U(z,y, 0), potential
on the reference surface of the earth and U(d,A) is the Fourier transform of U(z,y, h),
gravity potential at altitude A.

Then the gravity gradients components are given by:

U,,ia,h [ -w; ]

33 ‘3! — g w? -
U.,{a,h = w0, U(a,0)
Uu%‘:’)h -Jw.w
U'x J,h —]U.U

where
W= (u.,w,)
w = /wi+w}

From Heller’s model referenced in 1], we get the spectral density of U(z,y,0) with
correlation distance D, :

$uv, (@) = ¢y (w) = i $ie=2D;

Equation (1) can be viewed as a representation of a linear system with U(&,0) as
input and

2
—Wwy

2
-
4
C-M w’
—jw,w
—Jjwyw

as the transfer function.

Then we can compute the spectral densities of the gravity gradient components at
altitude A:

¢u,,$ | :g |
‘U.,{U, ; = e:ul u?;’ ‘U,(U)
¢U..{ wiw

| $v,.(@ wiw?




By taking the inverse Fourier transform, we can determine the auto- correlation func-
tions for the gradients, say Sy(z,y, ).

Example: Say we want to compute Sy,,(z,y,h)
we have
s
$u..(3,h) = 2Py, () = Y pawte (4D
=1

then
3

400 |
Sv..(z, ¥, h) =Z b / /. . eilwastugy) 4,-2w(h4+Di) dw, dw,

=1
or
3 2R 4o
S ’a’h = : cirucu (0-0), 8 ,~2u(A4+D,) dwda
v..(1 0, h) .Z;l ¢ /o /o whe
that is

3 400
Sv.(rh)=3 ¢ 20 /o W@ +D) 3 (p)du

=1

In the special case of a flight path over a point grid, we need to compute s, = E[s,e]],
%
where S, is the sequence of signals we want to estimate s, = [ : ] .
Spn

Let’s suppose that we are measuring the component U,, of the gradient then:
Elsy,8p,) = Sv.,(rijs )

where
rij = ||PiFjll,

is the distance between points P; and P;.

Gravity Survey

To perform a gravity survey, the craft which carries the instruments follows a partic-
ular path. In the simple case of a square survey area, a possible strategy is to fly parallel
tracks as shown in Figure 1.

However, in order to remove drifts and red noise from the measurements, a better
way is to make cross checks, taking two measurements at two different times at the same
point. The grid of Figure 2.1 is an example of this type of flight. Also shown is the time
of second crossing, Figure 2.2, and the time between the two crossings versus the point

4




of interest, Figure 2.3. One can see that for the path of Figure 2.2, the crossings occur
essentially during the second half of the total survey time T and that when they begin to
occur, it is in such a way that they are close to each other in space.

In order to get a better time and space distribution of second crossings, a path such
as the one shown in Figure 3.1 might be of interest. Here, a row or column is skipped at
each pass, and the effect can be seen in Figures 3.2 and 3.3. Basically, scz.nd crossings
occur earlier and two consecutive ones are more likely to be spread in time. Another
advantage of this kind of path is the possibility to continue to make measurements while
turning between two tracks. If one row or column (or more) is skipped, then the radius of
curvature in the turning is bigger, so that both the bank angle and the induced acceleration
are smaller. This may allow the instrument platform to remain in tolerable perturbations
and compensations may be possible.

In view of the disappointing results that we are about to give, we did not pursue the
question of efficiency due to variations in the radius of turns, nor did we carry the study
to include the effect of mass attraction and error modeling on the instrument.

Criteria for Comparison

Our purpose is to get an estimate of the gravity gradient at the grid points with the
smallest error-standard deviation. Since all points are a priori of equal importance, we
take as the performance criterion the arithmetic mean of the standard deviation obtained
at each point, that is:

1 N
Tper = ‘ﬁ- z-:lﬂ.'

where o; = /P; and P; is the variance of the error in the gravity quantity at point
i : P, = E|(sy, —3,,)%]. N is the number of points on the grid. Thus, we will be considering
as the best path the one that minimises the criterion o,.,.

Theory

The gradiometer output signals consist of the sum of a signal to be estimated (gravity
quantity) and the noise inherent in the instrument.

y=8+n where s is any one of the gravity gradient components and n is the
instrument noise. If we take M measurements at M different times, we have in vector
)] L
y=8+n where y=| : |sa=] :
Yn v

form:
ny
in=1
Ny
where n; is the instrument noise at time ¢;, etc. ...

If the pattern is a square grid with intersecting points, then M = 2p? where p is the
number of points on the side of the square grid.

.8
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The sketches above show 4 by 4 grids. The speed of the
craft is uniform and the turning times are neglected. In Fig.
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We assume for simplicity a linear estimate from the observations:

3 = Ky where K is an M x M gain matrix. This is a smoothing formula where we
use all the collected data to estimate the gravity quantity at each point.

The error in the estimate is 3 2 s —3or 3= (I~ K)s — Kn.
Then the covariance matrix of the error, say P, can be computed:

P =E[5") = (I - K)S(I- K)T + KNKT — (I - K)E|sn"| KT — KE[ns"|(I - K7)

where S £ E[ssT)and N £ E|nnT).

The gravity signal S and the instrument noise being uncorrelated, the formula reduces
to:

P=(I-K)S(I-K)T+KNKT

Then we choose the gain matrix K that minimises the trace of P (least squares
estimate) that is:

d(tr(P)) = tr[(—(I - K)S + KN)dKT + dK(-S(I - K)* + NKT]=0

This yields —(/ — K)S + KN = 0 or K = S(S + N)~1 whenever the inverse exists
and in this case K exists and is unique. We remark that if (S + N) is non invertible then
Elyy”] is non invertible. Minimising every term P;; leads to the same gain matrix K. The
linear least squares estimate is then deduced 3 = S(S + N)~'y. The performance of the
estimate is judged upon the error covariance matrix and more precisely on the diagonal
entries of this matrix. Substituting for K in the expression of P, we get:

P=S(S+N)'N

In addition to the fact that n and s are uncorrelated, we have implicitly assumed that
s and n are gero-mean signals. If this is not the case, (E(s) # 0 and/or E|n| # 0 but still
E[nsT] = E[snT] = 0), then the formulae are modified in such a way that we replace the
random variables with their centered counterparts, namely:

where (y = s + n)
3= E(s)+ K(y - E(y))
K=8(5+N)"
P=S8'(S"+N')'N
with
S*2E|ssT| — E|s|E[s")

L




N*2E|nnT] - E|n)E[nT] .

Then for a particular pattern that links times to points, we associate the variance
P(t,,t,) with the point which is flown over at time ¢;.

However, for a grid with crossed points, it turns out that it is never necessary to take
the inverse of the M x M matrix (S + N) because as can be expected, there are a lot of
redundancies in the matrix P computed as P = S(S + N)"'N. For example, if at times y -
and k the same point is flown over (with 5 # k), then obviously P(t,,t;) = P(,%) Vi; in
particular, P(t,‘,t,‘) = P(t;,tg).

We detail this in the next section on preliminary numerical results.
Numerical Results

We take for our example p = 4 and there are 16 = p? points on the grid and we show
first how to reduce the sige of the matrix to be inverted (S + N) (the path lasts M units

of time).
2 4 Re, Rp1
=\ : and §,=] : also ny=1 : n,=1| :
St Syn Bin pn

Let
where the subscripts ¢t stand for time and p for points (N = p?)
then

s =Fs,

{"0=F"p

where F is the M x p? matrix that maps the points to the times, i.e., F(s,5) = 1 if
point j is flown over at time ¢; and O otherwise.

F is full rank and let F; be the pseudo-inverse of F(F; is p? x M) then we can write

S, = FS,FT [ S, =F.S\FF
N, = FN,FT | N, = Fn FT

where
S = E[ss7]

N = E[nnT]
From previous results we had:

Py = S(S:+ N))"'N,
7

————————————————————




which yields
P, = FS,FT|FS,FT + FN,FT|"'FN,FT
or
P, = FS,FT|F(S, + N,)F*|*FN,FT
but
FT|F(S,+ N,)F'|"'F = (S,+N,)™.

Then

P, = FS,(S,+ N,)*N,FT =F P,FT where P, £ S,(S,+ N,)"'N,.

P, is a p? x p? matrix the diagonal entries of which are repeated in the diagonal of P,.
P, gives directly the covariance of the gravity gradient at the points of interest.

For the numerical example, we chose a 4 x 4 grid with two different paths and we
wish to compare the performances using the criterion mentioned earlier. We have first to
define the covariance matrices N and S and to construct the F' matrix for the two different
paths.

The models used for the random signals n and s are exponentially correlated. That is,
the entries of the covariance matrix N; vary as the exponential of the time difference and
the entries of the covariance matrix S, vary as the exponential of the distance, namely:

——
ir. 50

N(i,j) = e and S,(ij) = e+

where r and § are correlation time and correlation distance, respectively.

These models do not claim to be accurate but represent only a first try to get numerical
performance.

Then we compute P, = S,(S, + N,)"'N, to determine the variance of the error
associated with the gravity gradient at each point of the grid.

For the two paths, we plot the mean of the standard deviation versus r(r = O corre-
sponds to a white noise).

Conclusion:

The spectral models of instrument noise and gravity gradient signal we used in our
simulations may not be realistic and this marks the limitation of the results we got. How-
ever, in the special case of exponential correlated signals, they allow us to answer the
question of the best path (among specified ones) according to the criterion we defined. In
terms of times of second croesing and times between crossings, the two paths chosen for
the simulation can be described as “very” different. Surprisingly enough, the performances
for the two paths are close to each other for the range of correlation times we have run.




However, the gap is getting wider in favor of path 1 when the correlation time gets larger
but the performance of path 1 is only 1.5 % better for r = 13 units of time.* In these
conditions, the choice of a *better” path appears not to be an issue.

Our final remark concerns the nature of the instrument noise. The way it has been
modelled assumed that it was stationary (in particular constant variance at any time); if
this is not the case, quite different results may occur; for example, the importance of early
crossings increases.

* 1 unit of time is the time required to fly from a point to the next one.
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(1] Breakwell, J.V., *Satellite Determination of Short Wavelength Gravity Variations,”
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PAPER TITLE: EFFICIENT GRAVITY GRADIENT DATA GATHERING

SPEAKERS NAME: Michel Bilello

‘Questtons and Comments:

Peter Ugincius: 1. If the noise were not correlated, would there be any
~ difference for different survey patterns? 2. What determines the position
of the maximum in the plot of error covariance vs. noise correlation time?

SPEAKERS RESPONSE: 1. No. 2. The ratio of correlation times for noise
and signal.




USE OF TERRAIN ELEVATION DATA IN AIRBORNE GRADIOMETRY

J. L. Center, Jr.
Geospace Systems Corporation
Wellesley Office Park
40 William Street

Wellesley, Mass. 02181

ABSTRACT
Terrain elevation data is needed to relate airborne survey data to ground data.

This paper quantifies the errors introduced if terrain effects are ignored. It also

suggests a method for operational use of terrain elevation data.
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PAPER TITLE: USE OF TERRAIN ELEVATION DATA IN AIRBORNE GRADIOMETRY

SPEAKERS NAME: Julian Center

Questions and Comments:

. Dan DeBra : Is a single site an adequate basis for verifying a GGSS and
data reduction systems given the disagreement based on simulation?

Terry Fundak: The site chosen, Bakers' Peak, has a variety of terrain-

some with lots of topographic relief and relatively little gravity structure
“ and some with flat terrain which is geologically active. White Sands or

another site is possibility.

Chris Jekeli: How do you know how much terrain correction to subtract from the
data without compromising the instrument test in terms of what it will sense.

SPEAKERS RESPONSE: There should be no problem. If you subtract out a major
portion of the signal and you have no problems in data reduction you know the
ingtrument works (has sensed the field you subtracted).




THE GRAVITY GRADIOMETER SURVEY SYSTEM

T. J. Fundak
Air Force Geophysics Laboratory

Earth Sciences Division

Hanscom AFB, MA 01731
ABSTRACT

The Gravity Gradiometer Survey System (GGSS) is now entering its firs:

phase of testing as a system. Over the next year a series of tests will be
conducted to understand the limits and characteristics of the instrument and
he gradient environment in which it operates. This presentation will outline
the status of the GGSS development program and highlight the events to take

place over the next year in the GGSS Test Program.




The Gravity Gradiometer Survey System (GGSS) is a self-contained gravity
measuring system designed to provide gravity gradients from a moving vehicle.
The GGSS combines state of the art inertial technology and satellite based
navigation to produce a system with the capability to provide gravity data in
all types of environments throughout the world. The GGSS is being developed to
perform gravity surveys from an airborne platform or in a land vehicle with a
recovery of the gravity vector to an accuracy of better than 1.0 milligals
magnitude and .18 arcsecs in each deflection component. For more details about
the GGSS gpecifications see Table 1.

A gravity gradiometer works by differencing the applied forces (both inertial
and gravitational) across the distance between two acceleration measurements.
Most of the linear inertial acceleration environment is naturally rejected by
this method, leaving only the difference in gravitational force across that
distance: the gravity gradient (Figure 1). By properly integrating the gravity
gradient along a survey track, the relative value of gravity between two points
can be found. 1In contrast to a gravimeter, however, all three components of
the gravity vector can be found with a tensor gradiometer, such as the GGSS.

Like all geophysical quantities, a measurement is only valuable when the
location of the measurement is known. In the case of a gravimeter, the estimate
of gravity at the 1 milligal accuracy level is only valid and useful if the
location of the measurement is known to about a meter in vertical and about a
hundred meters in horizontal position. However, in contrast to gravimeter
measurements, in order to produce similar accuracy in the recovery of gravity
the gravity gradients are needed to only one part in 3000. In an airborne
environment, this means that the need for positioning a measurement of gravity
gradients in space is not nearly as stringent as for a conventional gravimeter
survey. One hundred meters of absolute position error is acceptable to recover
gravity to better than one milligal in accuracy. A satellite based navigation
system, such as Global Positioning System (GPS), can routinely provide position
information with this level of accuracy.

Near the surface of the earth, however, positioning becomes more critical.
While the gravity field is relatively well characterized even at the high
frequencies, the high frequency variations of the gradient field at the 1
Eotvos* level are not well characterized to date. Figure 2 indicates that many
common objects produce significant signals that can normally be ignored in
measuring the gravity field. It is expected, however, that the power spectrum
of the horizontal components of the gradient field will not have significant
power at wavelengths of tens of meters. To provide the meter level navigation
accuracy that may be needed will require a supplement to the GPS system.

HARDWARE

The heart of the GGSS system consists of a gyro-stabilized platform with
the three orthogonal gravity gradient instruments mounted in an umbrella
configuration. Six electronlcs racks containing an airborne computer, a GPS
Navigation System, power supplies, control electronics, a vehicle interface
buffer, and data recording equipment service the gradiometer and platform,
and record data for post mission reduction.

* 1 FEotvos = ten to the minus nine per second squared

= 0.1 milligal over 1 kilometer.
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The Gravity Gradiometer Instrument and the Platform

The basic gravity gradiometer instrument consists of 2 pairs of specially
selected accelerometers (figure 3). A pair of accelerometers provides a
measurement of the average gravity gradient field across the distance that
separates them. In a dynamic enviroment, it is necessary to use a slow rotation
to modulate the gravity gradient signal. This technique allows the use of
frequency domain signal extraction techniques, so that the signal to noise
ratio can be improved. 1In this way, gradient signals many millions of times
smaller than the acceleration which produce them can be extracted. This method
has proven very effective in the Navy's Gravity Sensing System (GSS) program
where the Bell Aerospace gradiometer is being used to correct ship inertial
navigation systems for gravity anomaly induced errors.

Two sets of accelerometer pairs are mounted as orthogonal pairs at the edge
of a rotating disk (figure 4). Theses, plus control electronics, are then mounted
in two half spherical shells. This makes up one Gravity Gradiometer Instrument
(GGI) (figure 5) . A set of three GGIs is mounted on the gyro-stablized
platform mechanized to provide a north, east, down (NED) or "Local Level"
environment. The platform maintains the local level attitude with the aid of
position information from the GPS receiver for the airborne survey and a “fifth
wheel”/inertial mechanization for the land survey . The stabilized platform
itself acts as a short term navigation system in a free inertial mode, if the
GPS signal is lost for a short period of time. With this mechanization, the
long term navigation error (drift) is handled by the GPS system and the short
term high accuracy navigation is handled by the inertial platform (two
two-degree~of-freedom gyros and a triad of accelerometers).

Electronics & Interfaces

While the heart of the GGSS is mechanical, the brains are in the electronics.
Figure 6 shows a block diagram of the major components of the system and the
signal flow. At the center of all the electronics is the ROLM MSE-14 airborne
computer. This computer is used for everything from platform control and
aircraft survey mission control to data recording and system health and control
functions monitoring.

A majority of the GGSS electronics is housed in five electronics racks.
Rack 1 takes care of the GGI's needs. Rack 2 monitors and controls platform
parameters, takes care of housekeeping and serves as an interface between the
platform, the GGIs and the computer. The other three racks of eectronics
contain the computer, a GPS reciever, an atomic clock, data recording equipment,
and interfaces to the various aircraft sensors and systems.

All of the various interfaces necessary to monitor the aircraft sensors and
systems, and to feed control signals to the autopilot and to receive power for
the GGSS are funnelled through a vehicle interface buffer (VIB). The antenna
lead for the GPS reciever, for example, is interfaced through the VIB to the
Texas Instruments GPS reciever which in turn is interfaced with the computer.
The GPS system consists of a TI-4100 GPS Navigator and a CHU aircraft antenna.

Another peripheral, but significant, component is the Uninterruptable Power
Supply (UPS) and battery backup which provides power conditioning and emergency
power for the GGSS. (The aircraft power environment is very noisy and the GGSS
is very unforgiving when it comes to power surges, transients, drop outs, etc.)




Land Vehicle and Aircraft

The GGSS will be installed in a modified motorhome to perform the land test
and in a commercial C-130 Hercules aircraft for the airborne survey. The
choice of aircraft for the GGSS was made to maximize testing and operational
flexibility. The C-130 aircraft is also well suited for low level airborune
surveys that will be required of the GGSS and will require little modification.
Aircraft modification can be a very long and costly process due to the complex
nature of the aircraft environment - safety is always the first priority.

With the GGSS program, an air transportable land vehicle will be loaded into
the C-130 aircraft, strapped down, connected to the various interface cabling,
and be flown on the day's mission. This arrangement should help minimize

“"down time” of the GGSS due to aircraft related maintenance and repair. A back
up aircraft can easily be substituted, if extended maintenance time is required.
This is in contrast to a system that is "hardwired” to an aircraft.

SOFTWARE

The GGSS contains three levels of software: 1) real-time, and two stages of
post mission software, 2) Stage 1 - time domain processing, and 3) Stage 2- space
domain processing. A functional block diagram of the software is shown in figure
7. All data reduction is accomplished off-line with the aid of two stages of
reduction software. Stage 1 Processing is common to both the land and airborne
tests, whereas Stage 2 Processing is tailored to the particular survey vehicle
and conditions.

Real Time Software

The real time software 1s run on imbedded microprocessors and a ROLM MSE-1l4
airborne computer. During the survey the MSE-14 monitors system performance,
controls the vehicle and platform, and records the system outputs. GGI and
other instrument outputs are corrected for environmental sensitivities, such as
pressure and temperature, and are compensated for instrument bias and drift, in
real time. The GGSS instrument outputs are then stored on magnetic tape for
post mission analysis and reduction. The outputs of the real time software are
modulated gradients, accelerometer outputs, platform angles and rates, GGI
wheel angles, position information (latitude, longitude, and altitude), time,
and other sampled instrument outputs from various aircraft and GGSS sensors.

Stage 1 Data Processing

Stage 1 software takes the modulated gradiometer outputs, platform parameters,
and position information and transforms these time domain signals into estimates
of the gradient in the instrument coordinates at the location of the measurement
in space. During this stage, compensations are made for the self gradient of
the platform, static and time varying vehicle induced gradients, angular acceleration
sensitivity and other residual instrument sensitivities. The outputs of this
stage of processing are estimates of the along track gradients and their location
in space.

Stage 2 Data Processing

During Stage 2 Data Processing, the output of Stage 1 is transformed into
estimates of gravity. Stage 2 Land software takes the along track gradient
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estimates and integrates them from a “truth data point™ to the point where a
comparison is desired. Stage 2 Airborne software contains a set of routines

which takes the gradient estimates at survey altitude, grids them, compensates

them for track crossing mismatch, incorporates the long wavelength information ‘
contained in the astro-geodetic tie points, and downward continues the data to

the surface of the earth. Estimates of the gravity field are then made for the

area of overflight. The outputs are an estimates of the gravity vector on the -
Earth's surface.

TESTING

Testing will be conducted in two geographic areas of the United States.
The first site was chosen for its proximity to the Bell Aerospace plant. It
will include the areas ad jacent to Niagara Falls, New York. The second site
was picked for its excellent truth data coverage, limited topographic relief,
nearby contrasting areas of active and benign gravity field, and good weather
and aviation environment. It is located in the Texas/Oklahoma Panhandle region
of the Central United States (see figures 8 thru 10).

The GGSS test program is divided into three parts: Laboratory testing,
and two "Phases™ of Land and Airborne Testing. As a matter of course, each
test will build on the knowledge gained in the previous one. Each will provide
a different look at the use of a gradiometer, its capabilities and shortfalls
and each will provide unique challenges for testing. For example, the airborne
environment provides for an attenuation of the high frequency gravity gradient
field, relatively low spacial sampling rates because of the aircraft velocity
and a potentially hostile acceleration environment. The signal in the land
environment, on the other hand, may be dominated by the high frequency signal. ‘
Even at relatively high sampling rates aliasing may occur, thus requiring
faster sampling rates, a slow vehicle survey speed and more accurate positioning
information.

The way in which the data from each phase of testing is reduced is also
significantly different. In the case of the land testing, the gradients are
integrated between a start and an end point. Any error between the known relative
values and gradiometer measured values, is a direct indication of instrument
performance. In the airborne test, a grid of data at flight altitude is used
to make estimates of gravity values. Downward continuation and estimation
procedure errors may dominate the errors sources here. Spatial aliasing errors
will also limit the system's level of performance. The aircraft's relatively
high velocity gives a relatively low spatial sampling rate. This, along with
the finite spacial sampling of the grid inherently limit the spatial resolution.

The ability to optimally reduce the gradiometer data post-mission, while an
important question for comparison to truth data, is not a critical factor when
only GGI noise performance is being gauged. Therefore, two types of tests are
performed for each of the two testing environments (land and airborne). The -
first test type, "Phase I testing”, gauges the system's sensitivity to various
vehicle and environmental conditions, determining the true instrument noise
performance. The second test type "Phase II testing” is designed to assess the
performance of this survey tool under a nominal set of “operational conditions”.

Laboratory Testing

Laboratory Testing consists of a series of tests which are designed to take .
the individual components of the GGSS through a series of calibration and
performance verification runs. Component level testing is followed by the




integration and systems level testing. 3tatic and Dynamic Tests are performed
with the aid of a Scorsby Table and various laboratory calibration and checkout
equipment. The various operating modes of the system are checked and a set of
error coefficients for the platform induced self gradients is produced, in
addition to the blas and trend estimates.

Phase I Testing

Phase I is both an instrument performance test and an optimization tool for
Phase I1 testing. It will allow for more effective "survey planning™. During
this phase of testing, each of the controllable parameters is varied and optimized
for use in Phase II testing. Each day's run is used to estimate the system's
expected performance and sensitivities so that a simulated Phase IT test performance
result can be estimated. An understanding of the characteristics of the land
and airborne gradient environmments will also be gained during this phase of
testing. These characteristics are also fed into the simulation to understand
how the gradiometer will be affected by differing gravity field power spectrums.
The software is then optimized for Phase II testing and operations. In summary,
Phase I will evaluate the conditions under which the instrument has ability to
give consistent results, i.e. can maintain the noise at the requisite level.

The testing strategy for this phase of testing can be summed up in two
words - repeat tracks. To evaluate the instrument noise characteristics, the
GGSS 1s required to traverse a particular track many times. Statistical analysis
will then be applied to the data to determine the instrument noise floor, drift
patterns and environmental sensitivities.

Phase I land testing will be conducted on a set of roads in the neighborhood
of the contracter's plant. The GGSS van will be driven in a test pattern similar
to those use to test an inertial postitioning system. After the vehicle has
completed a number of repeat tracks, a study will be made to determine instrument
parameters and sensitivities. Nolse sources are then isolated and corrected or
compensated for in the software.

Similar repeat tracks are then flown with the van in the aircraft. 1In each
case, parameters such as vehicle velocity, track control mechanisms (autopilot,
cruise control, and manual) and road surface or atmospheric turbulence will be
varied to test for instrument sensitivity to a particular parameter.

While the statistical characteristics of the gradient field will show up in
this test, it is not critical that they be understood exactly at this point in
testing. The test method here is repeatability. Therefore, it is only important
that the gradient field have no temporal variations, so that the difference
between each traverse can be judged as an error.

Phase II Testing

During Phase I1 testing, each vehicle will "survey” a predetermined set of
tracks and be required to produce estimates of gravity at points along the
track in the land case, and at selected points beneath the flight grid for the
airborne test. During this phase of testing, the system's performance will be
evaluated under near "optimum”™ conditions, subject only to changes in the
strength of the gravity field. This will allow an understanding of the
gradiometer's ability to recover the gravity ffcld under optimal “"operational”
conditions. Both a relatively smooth and a relatively rough gravimetic field
are found in the Phase I1 test area (Figure 9).




P

Phase 11 Land testing will verify the GGSS's ability to “"transfer™ gravity
and deflection of the vertical between a point with a known gravity vector and a
point with unknown values. A series of increasingly longer loops will be
traversed starting at the Clinton~Sherman Airfield in Burns Flat, Oklahoma ’
(Figure 10). On each of these loops a number of "truth data™ points will
be presurveyed. Comparisons will be made at a selected number of these points.
The mismatch between "truth” and the measured value will be a direct indication -
of the error in the GGSS's recovery of the gravity vector.

Phase 11 Airborne testing will verify the capability of the GGSS to provide
survey quality gravity data from an airborne platform. The GGSS van will be
loaded onboard the C-130 aircraft and then fly a grid pattern like that of
figure 11. An area of approximately three hundred kilometers square will be
covered with orthogonal tracks at five kilometer track intervals by the end of
the test program.

A day's survey will be controlled by the operator through the airborne
computer. Flight planning information will be stored by the operator prior to
each day's mission in the form of "waypoints™. Once the aircraft is in the
survey area, the GGSS computer will fly the aircraft through an autopilot
interface. A set of cockpit informational displays and instruments, and control
switchs will allow the pilot to engage, disengage and monitor the progress of
the survey.

A typical flight will last six to eight hours at a constant altitude near
six hundred meters above ground level and at a constant ground speed of about
four hundred fifty kilometers per hour. Operation of the GGSS requires that at
least three GPS satellites are visible while the survey is in progress. Because
GPS will only be partially operational during this test program, GGSS testing ‘
can only be conducted only in a satellite availability “"window”. With the present
constellation of satellites, approximately six hours of coverage will be available
each day. The number of satellites and the times of day they will be visible
during October of 86 is shown in figure 12. The general shape of this bar
chart does not change from day to day. £ach month, the "window” moves about two
hours earlier in time.

It is the philosophy of this test program to attempt to measure the instruments
potential for providing needed gravity survey capability. Phase II testing is
specifically designed with as few obscuring variables as is possible. Many
factors can and will degrade system performance. The "noisy™ aircraft vibration
and turbulence environment, poor aircraft control parameters: altitude hold
times, poor tracking or airspeed control or uncoordinated flight, and suboptimal
data processing are all examples of possible degrading factors. Others will be
found in the course of testing. Like other instrument tests, one tries to
control as many of the known parameters as possible until they are characterized
or their influence mitigated. Compensation for those that cannot be controlled
will be accomplished post mission using signal processing.

For the land vehicle, an attempt will be made to maintain an optimum constant
speed on relatively "good” roads, free of interfering traffic. Events such as
the passing of a large truck will be logged for analysis and, if needed, later
compensation.




In the airborne envircnment, every attempt will be made to minimize
interference from other air traffic. The test will be flown under near perfect
aviation conditions. Altitude and airspeed will be maintained near constant,
and heading will remain constant for long periods of time. The aircraft’'s
airspeed will be maintained so as to minimize vibration and turbulence induced
acceleration errors found in Phase I testing . Flights will probably be flown
during or at least with prior knowledge of optimal GPS satellite geometry. A
grid of evenly spaced tracks will be flown with every attempt to maintain the
uniformity of the grid. Attempts have been made to provide a flight environment
which minimizes weather induced errors and delays, air traffic conflicts and
deviation from the constant set of test conditionms. Therefore, the test
should conclude with an accurate forecast of the potential value of the GGSS to
a survey organization, like DMA.

Laboratory testing will begin in January of 1986 with Phase I and II to
follow. Initial testing is expected to be completed in early 1987. A summary
of the test program is provided in Table 2. Follow-on tests are anticipated
and will evaluate the best way to deal with operational problems such as variable
altitudes, airspeeds, topographic relief patterns, weather, and aircraft
capabilities.

The development of the GGSS is being managed by the Earth Sciences Division
of the Air Force Geophysics Laboratory (AFGL), Hanscom AFB, Massachusetts under
funding from the Defense Mapping Agency (DMA), Washington D.C.. The GGSS is a
product of Bell Aerospace Textron, Niagara Falls, New York.
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Figure 1 - This figure shows two accelerometers located
side by side and with sensitive axes aligned in the 2z
direction. Each accelerometer is measuring the total
force applied to 1t. Both accelerometers are subject to
an inertial acceleration a and gravitational force which
differs by Ag over the distance seperating them Ax. The
difference in applied force divide by the distance

. seperating the accelerometers is the measurement of the z

, component of the gravity gradient in the x direction. In
other words, it is the difference in the z component of
gravity over the distance Ax.
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Figure 5-The GGi is the heart of the GGSS system.

It contains four of the BELL Model VII accelerometers,
mounted tangentially to the edge of a rotating disk,

at 90 degree intervals . The sum of the outputs of a
set of accelerometers gives the average gradient across
the distance of separation. A set of three GGls are
mounted on the gryo stabilized platform shown.
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Figure 7-Block Diagram of the Stages of Data Processing
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Figure 9 - This map shows the Phase 11 GGSS Test Area.
The outline shows the 300 by 300 kilomster area whith
will be flown by the CGSS as a test of survey capability.
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NUMBER OF VISIBLE GPS SRTELLITES
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APPROXIMATE LOCAL STANDARD TIME IN HOURS (14-15 OCT 66)

Figure 12 - The Global Positioning System (GPS) will be the primary
navigation tool used during this test program. Four visible satellites
are required to obtain a three dimensional position without other aids
such as an atomic clock or barometric altimeter. GPS will provide
worldwide navigation capability in the near future. The present
constellation of satellites provides four satellites visibility only

a limited number of hours per day. The projection for an average day
in October 1986 is given above. The height of the bar indicates the
number of satellites that will be visible at that hour of the day in
the Texas/Oklahoma Area.
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SPEC ANTICIPATED

GRAVITY DISTURBANCE RECOVERY .9 mgal .83 mgal
(WAVELENGTHS < 500 KM)

DEFLECTION OF THE VERTICAL .18 arcsec .16 arcsec
POSITION ERROR 100 meter 15 meters
PLATFORM TILT 26 arcsec 15 arcsec
AZIMUTH 66 arcmin 34 arcmin
SYSTEM NOISE (maximum allowable) l-?—;:- + 190 (E/R/S)

TABLE 1 - AIRBORNE GGSS ACCURACY REQUIREMENTS




Test

LABORATORY

PHASE I

LAND &
AIRBORNE

PHASE II

LAND

AIRBORNE

Method
LABORATORY METHODS

Study instrument sutputs
produced by various inputs
under static and dynamic but
controlled conditions.

REPEATABILITY TEST

Comparison of the ability
of the instrument to give
consistent results when the
instrument traverses the
same test track many times.

COMPARISON TO "TRUTH" DATA

Comparison to "truth” data
by along track integration
between a "truth” data point
and a test point.

Comparison to "truth” data
by gathering data in a large
area and reducing this data
to gravity values at selected
point where “"truth” data is
avalible.

Purpose

Calibration and compensation

Understand instrument outputs
and their sensitivities

Verify instrument noise
and sensitivity

Characterize the statistical
nature of the gradient field

Verify the system is capable
of providing survey
quality data

Table 2 - GGSS Testing in Summary




ATRBORNE GRAVITY GRADIENT SURVEY DATA REDUCTION

W. J. Hutcheson
Bell Aerospace Textron
P. 0. Box One

Buffalo, NY 14240

ABSTRACT
Algorithms which have been developed at Bell Aerospace Textron for the

GGSS Phase II test plan data reduction requirements, will be described in
detail. The data reduction stages include track crossing adjustment, optimal
spatial integration, gridding, interpolation and smoothing, low frequency
adjustment using astrogeodetic data and downward continuation. Simulation
results obtained using a synthetic field will be presented to demonstrate

the algorithm performance.
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PAPER TITLE: AIRBORNE GRAVITY GRADIENT SURVEY DATA REDUCTION
SPEAKERS NAME: John Hutcheson
Questions and Comments:

* Julian Center: What statistical model do you use for least squares collocation
to incorporate tie points?

SPEAKERS RESPONSE: The STAG (or reciprocal distance) 7-term gravitv model
» 1s used in the LSC algorithm to upward continue the astro tie point to a
node on the derived map.




ISOMORPHIC GEODETIC AND ELECTRICAL NETWORKS: AN APPLICATION TO
. THE ANALYSIS OF AIRBORNE GRAVITY GRADIOMETER SURVEY DATA

- RRH: GRAVITY GRADIOMETER SURVEY ANALYSIS

D. H. Eckhardt
Air Force Geophysics Laboratory
Earth Sciences Division
Hanscom AFB, MA 01731-5000

ABSTRACT
Late in 1986, the Bell Aerospace/Textron Gravity Gradiometer Survey System

(GGSS) will be tested by the Air Force Geophysics Laboratory in an airborne survey
of a 300 km x 300 km region of Oklahoma and Texas. The survey pattern will be a
grid with a 5 km separation between adjacent tracks, north-south and east-west.
One way to process the GGSS survey data is to analyze an electrical network that is
‘eomorphic to the survey network. The integrated gradients between the survey
crossing nodes correspond to the applied voltages between the nodes of the electri-
cal network; the gradient variances correspond to the inter—nodal resistances; the
elements of the ad justed gravity vector correspond to the nodal voltages; and the
solution variances correspond to the resistances to ground. The survey error
analysis is performed by calculating the resistance to ground of the electrical
network; a technique for making the calculations in large networks is explored in
detail. For a sample survey scenarios with one ground truth control point near each
corner of the survey square and with realistic values for the survey parameters,
the gravity disturbance standard deviation is less than 0.25 at all nodes. With no
'hround truth, but with a gravimeter on the aircraft that can independently determine
gravity to 10 mGal at all nodes, the adjusted gravity disturbance standard devia-
“tion is less than 1 mGal.

(For more detailed information see Geophysics Vol 51 #11 November 86)
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‘ STAGE II PROCESSING OF AIRBORNE GRAVITY GRADIOMETER
DATA USING FREQUENCY DOMAIN TECHNIQUES
A. A. Vassiliou
The University of Calgary
Division of Surveying Engineering
2500 University Drive N.W.
Calgary, Alberta, T2N 1N4
Canada
ABSTRACT
A set of frequency response functions between the first-order and the

second-order gravity gradients is developed in this paper using flat-earth

approximation. In this way the spectrum of each first-order gradient is

10

.related to the spectra of one or more second-order gravity gradients. Assuming

noise-free second-order gradient measurements, these equations are transformed

back into the space domain as integral equations relating each first-order

gradient to all of its second-order gradients (e.g. Tz to Txz, Tyz, Tzz).

The frequency domain relations are used to estimate the first-order gradients

employing FFT. A set of simulated data i{s used to test these relationships.

Results from these tests and computer time requirements are finally discussed

in this paper.
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DATA

OBJECTIVES:

Develop a fast computational method in the frequency domain for the
estimation of the first-order anomalous gravity gradients from

gravity gradiometer data. Take advantage of the efficiency of FFT,

Use as many second-order gravity gradients as possible for the
estimation of any single first-order gradient. Take the

gradiometer self-noise explicitly into account.

USED:

A set of about 250 000 simulated airborne gradient measurements on

a 2.31 x 2.44 km grid, over a 472 (north) x 496 (east) km area, is

used.




2. INPUT - OUTPUT FILTERING EQUATIONS

2.1 Single Input - Single Output Equations

f(x,y) — h(x,y) { —> g(x,y)

G(u,v) = H(u,v) F(u,v) (1)
SRCROI H(u,v) 1% 5. w0 (2)
ng(u,v) = H(u,v) Sff(u,v) (3)

For extraneous noise n(x,y) present

Ssg(u,v) = |H(u,v)|2 {Sff(u,v) + Snn(u,v)} %)

ng(u,v) = H(u,v) {Sff(u,v) + Snn(u.v)} (5)




2.2 Multiple Input - Single Output Filtering Equations

For simplicity reasons, discuss only two input - single output
systems

fl(X.y) —

L

> g(x,y)

>

fz(x.y)

* The two inputs and output related in the frequency domain by

G(u,v) = Hl("’V) Fl(u.V) + Hz(u.v) Fz(u.V) (6)

» For partially correlated inputs fl(x.y). fz(x.y), the transfer

functions are given by

Sf ,f (U.V) Sf og(u,V) - Sf ,f (u)v) sf 'S(U.V)
2°°2 1 1°°2 2
Hl(u,v) = | 2 N
S (u,v) § (u,v) - IS (u,v)!
fl,f1 f2’f2 fl,fz
S¢ £ (u,v) S¢ .g(u,v) - S f (u,v) S¢ -B(U'V)
1’71 2 2°71 1
Hz(u,V) - | 2 (8)
S (u,v) S (u,v) - I8 (u,v)!
fl'fl f2’f2 fl'fZ
* For fully correlated inputs fl’fZ’ the transfer functions HI'HZ take
the form
Sfl.g(“’v)
HI(U.V) = 9)
S (u,v) + S (u,v)
fl,fI f2’f2
sz’g(u.v)
HZ(U.V) = (10)
s (u,v) + S (u,v)
f05 208,




« For input noise uncorrelated to both fully correlated input signals,

the transfer functions are modified

S (U,V)
fl,g
Hl(u.v) = (11)
S (u,v) + S (u,v) + S (u,v)
fl’fl f2,f2 n,n
sz'g(u,v)
Hz(u,v) = (12)
S (U:V) + S (U,V) + S (U’V)
fl,f1 f2.f2 n,n

+ Similar expressions to (9), (10), (11), (12) can be derived for a

case of more than two fully correlated input signals.

* Multi-input - Single output filtering equations very useful for

airborne gravity gradiometer where all input signals Txx’ Txy’ sz,

T ,T , T are fully correlated.
yy' “zz’ “yz




_———————_'-'
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3. APPLICTION OF MULTIPLE INPUT -~ SINGLE OUTPUT SYSTEMS TO THE ‘
ESTIMATION OF FIRST-ORDER GRADIENTS FROM SECOND-ORDER GRADIENT DATA
-
Statement of the problem: Estimate T from T , T ,T ,T , T
z xz’ “yz zz’ "xx’ Tyy
Flat earth approximation 1s assumed. -

3a. Estimation of Tz from Tzz gradient measurements

* To estimate Tz(x,y) from measurements of Tzz(x.y, z=h), is

necessary to derive the transfer function between them

S

T 'T (u ,V) 8W3q3e-2“hqs T(u.v)

H(u,v) = zz 2 = - T,
’ 4 4 -4%hq
Sy (u,v)+Sn n(u.v) 167 °q e Se T(u.v)+Sn n(u.v)
2z’ z2 ’ ’ ?
(13) .

where q= (u2 + v2)5 (14)
* TFor simplicity reasons assume noise-free measurements

eZth

H(u,v) = - (15)

q

Tz(x,y) cannot be computed at the (0,0) point. The mean of Tz has to

be evaluated from other scurces.

*+ Equations (13), (14) incorporate plane integration and downward

continuation.

Pure plane integration corresponds to Stokes formula

T (x DY)
1 zz 1771
T (x,y) = = 5= J J dx, dy (16)
2 ] laexp?s geypht P! ®




y2

. 3b. Estimation of T from T -7
z Xz

* Necessary to determine the transfer functions between sz - Tyz

and Tz (noise-free measurements assumed)

2whq
Ho(uv) = - 106 (17

21vq2

27nhq

Hy(u,v) = - 1L92— (18)
2nq

P{Tz(x,y)} = Hl(u,v) P{sz(x,y z=h)! + Hz(u,v) F{Tyéx,y, z=h)}

(19)
where F denotes the Fourier transform.
. + Pure plane integration transformed in the space domain yields
1 sz(xl,yl) sina 1 Tyz(xl'yl) cosa
T,00y) = - 5% 3 7% 4y 7 7T, dxqdvy
[x=x )"+ (y-y "] [x=x )+ (y-y )"}~
-ld -0 -l -l
(20)
where
(x—xl) (y-yl)
sina = 3 7% » cosa= 7 R (2D
[(x-x,)"+(y-y,)"] [(x=x )"+ (y-y ) "]
* Equation (20) is important, providing Tz directly in terms of sz,
Tyz' A similar equation can be derived for the anomalous potential
T (x,,y,) sina T (x,,y,) cosa
T(x,y) = - % J 5 lz l 7.5 4%9y;” ;-wj + 12 l =, 4% 9
[(x=x) "+ (y-y;)"] [(x=x)"+(y-y,)"]
. * According to (22), geoidal undulations can be computed in a local area

from gridded 2-D deflections of the vertical (ideal case).
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3c. Estimation of T from T -7 - T
z xz vz zz

* Determine transfer functions between T -T ~T and T for noise
Xz ‘yz 2z z
free measurements

. .2nhq
H(u,v) = - Ju_g__ (23)

2nq
. - e21rhq
Hz(u,v) = - 1—————3————- (24)
2nq

eZth
H3(u.V) = - —— (25)
4nq

F{Tz(x,y)) = Hl(u,v)P{sz(x,*.z-h)}+Hz(u,v)F{Tyz(x,y.z-h)}+H3(u,v)

F(Tzz(x.y,z=h)} (26)

+ Pure plane integration transformed in the space domain results in

1 ( (xl,yl) sina 1 (x 1*Y,) cosa .
Tz(x,y) = -y R dx dyl o R dx dyl
) [(x-x)'f(yy) ] [(x-x) *(yy) ]
T (x.,y,)
- %; J J zz2 171 T dxldyl (27)
[(x=x) "+ (y-y)"]
T related directly to T_._ , T__ , T _ by an integral formula.
z xz’ yz' "2z
* A similar formula can be developed for the anomalous potential T
1 (x .yl) sina 1 Tv (x ,yl) cosa
T (x,y) = - 77 5 dx,dy,- 7+ R dx,dy,
[(x-x)+(yy)] [(x-x)*(yy) )
T (x 4 )
)} 2 1771
- dx dy. (28)
4
" J } [x2e(ymyp P 17!

* Formula (28) provides the anomalous potential (g20idal undulations) in
terms of all of its first-order gradients. For local gravity approxi-
mation though, this formula is not applicable due to the unavaila-
bility of T T (deflection data) in 2-D grids. Nevertheless equation
(28) is very ugeful because all second-order gradients T xz Tyz’ T

are available from a gravity gradiometer system. zz

NN




Notes:

1.

In sections 3a, 3b, 3c, the second-order gradient T _ can be
substituted by the sum -(T__ + T ). So equation (3%) takes the
£ xx vy
orm

2vhq

F(T_ () = = & T HT,, (yazeh) + T (x,y,2=h) ) (29)

All the multiple input - single output equations are equivalent to
the ones derived from a multidimensional Wiener filtering with
linearly correlated inputs. Wiener filtering (in a planar
approximation) can be formulated as the 2-D Fourier transform of a
least-squares collocation estimate. However, Wiener-filtering is
much faster computationally to least-squares collocation. For
instance assuming a 2-D grid with 50 points in each direction and
three gradient measurements per point, least-squares collocation
has to invert a 22500 x 22500 matrix. This takes more than 15 CPU
hours on the Supercomputer Cyber 205. On the other hand

application of multi-dimensional Wiener filtering or multiple
input-output filtering equations, leads to an inversion of a 3 x 3
matrix for each pair of frequencies (u,v). For linearly related
inputs this inversion reduces down to an inversion of a 1 x 1
matrix.

So far the effect of topography on the gradients has been
neglected. However it can be explicitly computed from the spectra

T ) 2 -2nqz > (21rq)ﬂ-l 21ru2 n
xx] = ~ 2mCe ol P{p(x,y) h (x,")} (30)
n=] n! q
® n-1 2
PIT } = - 2nGe”2"9%, ¢ (279) 2% pio(x,y) h(x,¥)} (31)
yy n=1 n! q
@® n
PT )= - 21Ge 2% 1 2")  pip(x,9) b (x,v)} (32)
zz n=1] n!
© n-1
F{T_} = - 2nGe”2"92, 1 (279) AN Plo(x,y) b (x,v)} (33)
Xy n=] n! q
® n-1
T }=- 21622 1 270 4 o0y Plo(x,y) B (x,y)) (34)
Xz n=1 n!
g n-1
r(ryz} .- 2me Mm%, ¢ 27D 4 o po(x,v) B (x,y) ) (35)

n=1] n'




Note 3. (continued)

where in equations (30) to (35) r{Tij} represent the spectrum of the

effect of topography on the second-order gradient Tij;

z, is the flying altitude
h(x,y) 1is the gridded height
p(x,v) 1s the gridded density (it can be taken as constant =

2.67 gr/m3)




4, DATA, TESTS AND RESULTS

4a Simulated data

« Airborne and earth's surface first-order and second-order gravity
gradients are simulated on a 2.31 km (north) x 2.44 km (east)
grid., For the simulation 9.26 km (north) x 9.74 km (east)

(1.e. 5' x 10') gravity anomaly data are used. The gravitw
anomaly data are given on a grid in Northern Saskatchewan, Canada.

Extent of the grid is 472 x 496 km.

» Flat-earth approximation is used under the transformation
dx = R cosé¢ d)

R = 6371 km
dy = Rd¢

e Long~wavelengths are eliminated by subtracting the spherical
harmonic expansion up to degree and order 36 of Rapp 1978 model,

from the original free-air gravity anomalies.

+ The modelling of the gravity data is made by a two-layer point
mass model (depths at 15.5 km and 5 km respectively). For high
frequency information a third layer is added buried at depth of

1 km, with white-noise point mass distribution on it.

+ The second-order gradients are simulated at a flying altitude of
600 m. They were corrupted by gradiometer ncise (following the

model published by White (1980)).
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4b. Results from the estimation of Tz from sz, Tyz’ T ‘

The mean of Tz over the whole area is assumed known from other ~

sources, Results are given on the inner area bounded 45 km from

the north and the south borders and 48 km inside the east and west

borders.

£ 472 km.

L 4km

‘45km

1st Case : No noise is taken into account.

Tz is estimated directly below measurement grid points

Measurements
T T =-T T ~T ~T
22z Xz yz xz yz zz

RMS error of Tz 0.70 mgals 0.46 mgals 0.4]1 mgals
CPU time
(on a Honeywell 545 CPU 560 CPU seconds 578 CPU seconds
Multic DPS 68 seconds (124848 measurements)
computer)




11

2nd case : The gradiometer self-noise is taken into account.

The PSD of the anomalous potential T is modelled by
A

]
Sp,pusv) = .6

where A, has been determined from data of all the
Saskatcﬁewan province,

Measurements
T T -T T -T -T
22 Xz yz Xz vz 22
RMS error of Tz 0.63 mgals 0.44 mgals 0.37 mgals
CPU time 622 CPU seconds 640 CPU seconds 660 CPU secconds

st case : The gradiometer self-noise isn't taken into account.
Tz is estimated by FFT interpolation at all the points on

1.155 x 1,22 km (north-east) grid.

Measurements
T T -T T -T =T
22 Xz yz Xz yz 2z
RMS error of Tz 0.50 mgals 0.38 mgals 0.32 mgals
CPU time (estimation at

499 392 points)
1 680 CPU seconds
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CONCLUSIONS

A fast computational method, employing FFT, is developed for the
estimation of first-order gradients from second-order gradients.
The method is based on the application of the multiple input -

single output filtering equations.

The method handles all possible combinations of gradiometer data.
For the estimation of T uses T , T -T , T -T =T .
z zz' 'xz 'yz' @ xz yz 22

Furthermore takes the noise explicitly into account.

Results from test runs with simulated data show that Tz can be
estimated, directly below the gradiometer points with an RMS error
of less than 0.70 mgals. The points at the middle of the gradio-
meter points, can be interpolated with an RMS error of less than

0.5 mgals.
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' KARHUNEN-LOEVE GRAVITY GRADIOMETER DATA PROCESSING

S. Bose
Applied Science Analytics, Inc.
7041 Owensmouth Ave.
Suite 206

Canoga Park, CA 91303

ABSTRACT
The Karhunen-Loeve data processing technique for gravity gradiometry is

reviewed. The method is based on the White Noise Layer (WNL) model which replaces
the unknown mass distribution below the survey region as multiple two-dimensional
white noise layers representing the vertical derivative of the disturbance potential
to any order. Such a gravity signal model is derived from the physical theory of
‘geodesy and is particularly suited for modeling high frequency phenomena. Of
particular interest is that such a model results in a nonstationary nonisotropic
representation of the disburbance potential. A two-dimensional signal processing
algorithm to process all the gradiometer data simultaneously is presented. The
estimation algorthm can handle multiple layers of different inline or crossline
data given in two dimensional grids at the same or different altitudes on or above
the surface of the earth. Different grid patterns of the same inline or crossline
measurements at the same or different altitudes are also accommodated by the
algorithm without resorting to any pre-processor averaging techaniques. The

method is such that at any given spatial point the gravity field's correlation in




any direction is not ignored and the estimation algorithm does not enforce any
unnecessary limitation of casuality on the data inasmuch as no one-dimensional ‘
scanning is performed. The problem of simultaneous smoothing of all the gradio-
meter measurements from all survey traverses in the region is solved by represent-
ing the disturbance potential solution as a Karhunen-Loeve (KL) expansion.
Estimating the gravity field or any of its derivatives simply reduces to estimat- -
ing the KL coefficients and performing the appropriate transformations involving

sine and cosine functions. Neither the estimation of the KL coefficents nor the
implementation of these transformations requires any matrix inversions. Downward
continunation as well as interpolation of estimates between grid measurements are

rerformed automatically. Thus large amounts of moving base gravity gradiometry

data can be handled by this technique in a computationally efficient manner.
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PAPER TITLE: KARHUNEN-LOEVE GRAVITY GRADIOMETER DATA PROCESSING
SPEAKERS NAME: Sam Bose
‘Questions and Comments:

John V. Breakwell: Aren't you, in effect, assuming that your finite gravitational
» ground pattern is repeated (to infinity in all 4 directions)?

SPEAKERS RESPONSE: No

. Julian Center: 1. Why are there only sine terms in the K-H expansion for
the potential?
2. How does your metnod differ from the Fourier-Transform/ Wiener Smoother
Method?

SPEAKERS RESPONSE: 1. Only sine terms in representation of T because the
solution of T was with zero boundary conditions; contributions from non-zero
boundary conditions can be linearly superimposed.

2. The method 18 general such that any choice of basis functions can be
used. Also the Karhunen-Loeve condition is imposed. There are also no
matrix inversions. Fourier transform techniques deal with stationary
processes whereas this method results in non-gtationary nonisotropic
covariance of the gravity field.
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GRAVITY GRADIOMETER (GGSS) TEST PLANNING AND
TEST DATA TREATMENT
» W. G. Heller
The Analytic Sciences Corporation
u One Jacob Way
Reading, MA 01867
ABSTRACT
Data reduction from an airborne gravity gradiometer survey system (GGSS) has
been long recognized as a challenging problem. The difficulty arises because of
the large amount of gradient data required to estimate gravity disturbances at the
surface. The work reported here decomposes the airborne survey data reduction
problem into a track-by-track treatment which is both optimal in a least squares
sense and utilizes surface gravity vector tie-point data. For low altitude GGSS
..nrveys (circa 600m), it is shown that the upward and downward continuation portions
of the reduction process can be effectively accomplished with few data points
(e.g. 1less than 10) and that track-by-track processing in a template zone
format 1s near optimal. In this case, near-optimal indicates that processing
algorithm-induced errors are less than 0.2 mgal/0.04 arcsec. Synthetic
airborne GGSS data from a gravity field realization typical of the Clinton-Sherman
test area 1s reduced. Gravity vector estimation results indicate that surface
recovery at an accuracy near 1.0 mgal/0.2 arcsecond can be expected from a
100 E2/Hz (30 E2/r/sec) GGSS. Quantification of the relative information
contents of each track of gradiometer data, as determined by the gradiometer
‘noise, vs the predictability of the gravity field along a track, based on its
correlation characteristics only (i.e. in the absence of gradient data),
“leads to further simplification in the data reduction process. In particular,

'or a gravity field typical of the Clinton-Sherman test area, a statistical

gravity model can be dropped from the GGSS data reduction process without

penalty if the GGSS errors are less than about 300 E2/Hz.
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PAPER TITLE: GRAVITY GRADIOMETER (GGSS) TEST PLANNING AND TEST DATA TREATMENT
SPEAKERS NAME: Warren G. Heller
.Questions and Comments:

Stan Jordan: You have presented a simplistic and optimistic view of how tie
points are used. 1 feel that the use of tie points should be approached
cautiously; local geologic features may have significant (one milligal)
effects on the tie points but are unobserved by the gradiometer at aircraft
altitude. 1If such aliasing effects arise at the tie points, they cannot be
« used to improve estimation of low-frequency gravity disturbances in the region.
These difficulties are not revealed by your analysis because the 7-shell
AWN model is not valid at wavelengths shorter than 3.5 km. To avoid aliasing
effects at tie points, mini-surveys should be conducted in the vicinity of
each tie point. These mini-surveys can be done with the (land-based)
gradiometer van.

Julian Center: To do upward and downward continuation you need to know the
vertical gradients all along the path. This may not be achievable with
high accuracy if there is high-frequency activity of the gravity field
around the tie point or estimation point.

SPEAKERS RESPONSE: For sufficiently short upward continuation distance
(e.g. 600 meters), local gradient data (measured by the gradiometer) at
altitude suffices. In an extreme case, say in which the tie points were
chosen injudiciously, such that the gravity field curved significantly
(perhaps, 50E or more) then surface gradient measurements near the tie point
could be appropriate. The practicalities of continuous use of gradient

data along the entire upward continuation path preclude “continuous upward
continuation”. Fortunately it is not necessary.




GRADIENT INTEGRATION PROCEDURE FOR

PATH ERROR REDUCTION

A. E. Rufty
Naval Surface Weapons Center

Dahlgren, Virginia 22448-5000

ABSTRACT
A procedure to integrate gravity gradients aloft to obtain gravity

disturbance values (aloft) will be presented. The algorithm simultaneously
weights all possible path integrals of the gradient to yield an optimal

estimate of the disturbance.
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PAPER TITLE: GRADIENT INTEGRATION PROCEDURE FOR PATH ERROR REDUCTION
SPEAKERS NAME: Alan E. Rufty
.Questions and Comments:

Alan Zorn: Stokes' theorem provides a connection between cross products
* of vector fields and line integrals of gradients: gy,_{' = ¢ ['"J‘,

Thus, the explicit constraint ¥ x f = 0 (ie-conservative field)
is equivalent to zero closed line integrals. 1Is the explicit constraint
. really required for your solution?

SPEAKERS RESPONSE: I use it because it is easy to implement in my algorithm,
and it does reflect the physics of the problem.
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‘ NASA REQUIREMENTS FOR A SPACEBORNE GRAVITY GRADIOMETER--AN OVERVIEW
C. J. Finley
« Office , Space Science and Applications
NASA Headquarters
- Washington, D.C. 20546
D. E. Smith
Space and Earth Science Directorate
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

ABSTRACT
Beginning with Sputnik and Vanguard in 1958, NASA has used artifical

satcellites and space platforms to measure and map the Earth's gravity. Until

now, the gravity field has been derived indirectly by the measurement of
satellite perturbations, such as with the Bzacon Explorers and Lageous satellites:
or by means of satellite alitimetry, such as with GE0OS-3 and Seasat. Each of
these techniques suffer severe limitations, the first in resolution due to

the high orbital altitude of anywhere from 500 km to almost 6000 km for Lageos
and the second in both resolution and global coverage because of the approximately
800km altitude of the altimetric satellites and being effective only over

oceanic areas. Spaceborne gradiometers will for the first time permit direct
measurement of the gravity field over the entire surface of the Earth at auch
improved resolutions and accuracy. The present gravity field with an uncertainty
of 5 to 10 mgals at resolutions greater than 500 km is inadequate for NASA's

= present operational and scientific needs. We need 1 to 2 mgals at 100 km

. LY

resolution for our solid earth geodynamics studies as well as for improved
« orbit determination and the derivation of a 10 cm ocean geoid to be used in

‘the Topex satellite ocean circulation studies.




In addition to the Earth, there is equal or greater value in being able to
measure the gravity fields of the planets. The same basic geophysical questions
about the structural rigidity of the lithosphere and the existence and form of
convection in the mantle apply to the moon and the planets as they do the Earth.
Further, the engineering difficulties of carrying out a planetary mission compared
to an earth mission make it essential that the technology that is used is fully
capable of meeting the scientific measurement objectives in both accuracy and
resolution; a re-flight may not be a possibility. A space proven gravity gradiometer

could be flown on many of the future planetary missions and provide a wealth of new

information about the planets and their satellites that cannot be obtained any other

way.
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PAPER TITLE: NASA REQUIREMENTS FOR A SPACEBORNE GRAVITY GRADIOMETER-AN OVERVIEW
. SPEAKERS NAME: Werner D. Kahn
Questions and Comments:

Jim Faller: Given the time slippage that has occurred with the GRM mission,

wouldn't it be appropriate at this time to once again take a hard and con-

temporary look at the GRM mission, and in particular, to look at what improve-
~ ments could be effected if a laser tracking system (perhaps using a stabilized

laser diode light source) were added and the DISCOS appropriately upgraded.

A laser tracking system could result in two orders of magnitude tracking

precision improvement which could, for example, be used to fly at a somewhat

higher altitude (keeping ground resolution the same) and thereby permit a

longer mission and/or a smaller vehicle (which would presumably cost less).

Such an optimized mission should then be compared to a single satellite

gradiometer system. The fundamental difference between these two approaches

is that one is in effect a "point” instrument and as such suffers terribly

from local internal-to-the-satellite mass redistributions and their effects

in the measured gradient(s). The other, GRM, enjoys the freedom from

these critical systematic error sources as a result of its long baseline.

(End effects are greatly reduced). One should wsorry whether or not the

single-satellite gradiometer can ever reduce the local mass induced gradient

changes much below the 0.01 to 0.1 E region. Certainly to achieve 1073 E

is difficult, if not impossible, and to achieve 1072E on the shuttle is simply

out of the question.

‘ Since the science to be learned depends entirely on the achieved resolu-
tion on the ground in the presence of any and all systematic biases, it is
critical to make realistic estimates of their magnitudes and thereby the
useful as opposed to the theoretical sensitivity of both of these systems.

It is the achieved rather than the theoretical sengitivity which will

dictate the quality of the science. It is my impression that (from a

fundamental design point of view) an extended (GRM) instrument (though

complicated by requiring two satellites) enjoys a great advantage over the
simpler single satellite instrument in regard to this all important and
pivotal design question.

Klaus-Peter Schwarz: The question addresses the interpretation of the
accuracy curves. You claim an accuracy of better than 1 mgal for gravity
anomaly resolution and of better than 1 cm for geoid resolution. On the
other hand, you state a wavelength resolution of 50 km. These two sets of
numbers are incompatible because the short wavelengths are not resolved,
and contain much large RMS errors than the ones you quoted.

SPEAKFERS RESPONSE: The numbers refer to one by one degree mean values. Short
wavelength variations were not considered. The RMS-values do not therefore
represent gravity field or geoild resolution at individual points.
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‘ GRAVITY FIELD FINE STRUCTURE MAPPING USING

A SPACEBORNE GRAVITY GRADIOMETER

W. D. Kahn
Goddard Space Flight Center
Mail Code 621
Greenbelt, Maryland 20271
ABSTRACT
Covariance Error Analysis studies have been performed to assess the capabilities
of a Spaceborne gravity gradiometer's capability to determine the short wavelength
components of the earth's gravity field. For the studies, consideration was given to
the effects of gravity signal attenuation due to increase in spacecraft orbit altitude,
the effects of orbit errors, altitude rate errors, gradiometer system precision,
‘estimation strategy etc. Typical results obtained are those for a satellite in a 160
km polar-circular orbit, carrying a three-axis gradiometer with a precision of 103
EOTVOS Units (E)*. The satellite orbit error was assumed to be 5.5 wcters, the
measurement sampling rate was 1 measurement per 4 seconds. The size of the region
surveyed over a 180 day period was 19° x 19° which was traversed by approximately 300
orbit passes of which a maximum of 16 passes traversed each 1° x 1° gravity anomaly
block within the region. Results obtained from the simulation indicate that the
gravity gradiometer can determine gravity anomalies with a horizontal resolution of
50 km to an accuracy of 0.4 mgals. Slightly improved results say on the order of 10

to 202 can be anticipated if the gradiometer precision is increased to 4 x 1074 E.

* 1 E =107 cm/S/em



9861 ‘ZL ‘11 "834
‘00 ‘SHONIHdS 0AVH010D

AW3AVYIV 4vSn
JIN3YIINOD AHLIWOIQVHOD ALIAVHD Hibl IHL

-1V G31N3S34d

LLL0Z QW "17138N33YO
1¢9 340D .
/43LN3J LHOIN430VdS a4vaaoo VSN
NHV " HIN"HIM

A8

YILINOIAVYD ALIAVYD INHOTIOVIS
Y DNISN
‘ONIddVIN 3HNLONYLS INI4 1314 ALIAVHD

o - \ |




S3AINMVINONY
dI03D ANV SINVINONVY ALIAVYHD HIV 3344 NV3IW
31340SI0 40 SINHIL NI NOILYIWHOANI Ql039D anNv

ALIAVHD TTVIHLSIHHIL HIAO0D3YH OL ALITIGVIVYD
S.H313N0IQVHD ALIAVHD INHOE3IDVdS V SSISSV
Ol Q3INHO443d N338 IAVH HOIHM S3Ianls

-SSNISIA T1IM

d313N0IAVHD ALIAVYD INHOE3IOVIS
Vv ONISN
‘ONIddVIN 3HNLIONYLS INI4 1314 ALIAVED




NOILVHNA NOISSIIN e
3ANLILTV 14VHOIOVdS o
NOILVHNOIINOD HILIWOIQVHD e

40 S103443 3H1 AQNLS e
SHOHHI J1VH OHAD e

dOHH3 NOLLISOd 14VHI3IVdS
3SION LN3IW3IHNSVIW HILIWOIAVHD e

:SVY HONS S30HNOS HOHHI 40 S103443 IHL AANLS e

SANMVINONY QI03O ANV ALIAVHO
30 AHIAO0I3H HO4 S3I1D931VHLS NOILVINILSI dOT13A3A o

‘OL SAOHLIIN SISATVNVY HOHHI JONVIHVAOD
ONISN A3NWHO44d3d N339 IAVH SNOILVINNIS HILNdINOD

m :HOVOUddV




A

AA

Ax

>>>
>>>

>

Mol aianra=ta+ =4
- «

>

INIIQVHO ALIAVHD e

(W) HLYV3I IHL JOSNIQvHe =Y
(Wwd) 14¥HI3OVdS OL 3ONVLSIA DIHLINID03IO = 4
(£S/UW) ALIAVHO TVINHON = 4

'A SO0 1z — 8+ 21 =)

X 3anLI9NO1 16 3anL1LvT
iv mememo M0018 H3IAO ATVNONY O_Ommv NVIW = (') Zw

nm 1,0 'ouy
AKQ Zo ..|lu

S3ITVYWONY Q1039 40 SWHIL NI TVILN3ILOd SNOTVIANONY e

(¢ - .'X) 02 .'¢ S00$ S0D + "0 NIS S NIS) |.S0D = '
!X 30NLI9NOT.'¢ 3anLiLvT
LV Q3IH3LN3D %2018 HIAO ATVIWONY ALIAVHO NVIW = ('X.'¢) B¢
LI 1

v .9v.'es00 ('maysi ') Be 7 -4

S3IMVYWONY ALIAVHO 40 SWH3L NI TVILN3ILOd SNOTVANONY e

v 'ev '¢s02

IVILN3LOd SNOTVNONY = L
IVILN3ILOd TYWHON = N
1+Nn=A
TVILN3L1O0d 1VIOL @

ST13A0OWN TVIILVINIHLIVIN




B it

B e

"HOLVIWILS3 3ONVIHVA WNWINIW V SI —m ANV ) = :.wwv IN3IHLO = < aNv M = d 4l

A1 M MY <_->>N$ LY ‘v M (V)4 24 % = (,5) 3

- '6=2
< ~

JONIIHVAQOD HOHYHI V10l

A HOLO3A HOHY3 LNIWIHNSYINW 3HL 40
JONVIHVA 3IHL 40 ISHIANI 38 OL NINVL ATTIVNSN ‘XIHLVWN ONILHOIIM = | M

ls
[Zd+'V .M v]=>
-
IHIHM

l l
Z.M W= 0

WHLIHOOTVY NOILVINILS3

SHOHY3 30NLILiV
SHOHYH3 31VvH 30NLILLY e
HOHH3 NOILISOd 3LIT13LVS o
S3IOVHNIOIVNI ANIWNHLSNI o
‘S30HNOS ONIMOTTO4 FHL HLIM LINIWIHNSVYIW NI HOHHI = A

S31TYWONY Q31SNrAVNN 40 HOLI3A = B
S3ITYWONY G31SNrAV 40 HOLI3A = ‘6
No N<+ —o —( - r—
L “¥VILN3LOd SNOTYWONY WOYJ ONISINY LN3IGVHD ALIAVES = L]

"G3A0W3Y TVILN3LOd 3ON3Y3I43H HLIM SLNDLNO HILIWOIAVYHD 4O HOLD3A =2
JHIHM

IRAEY.
T3AOW LNIWIHNSVYIN




(ILSACAYNN SIITYWONY ol X ol ove)
AQNLS HIANN V3HY w01

NOI93d viva

(@3LSNrav S3NVNONY ol X ol LZ1) NOIO3Y NOILVIILS3

Y313WO0IQVHO/HIVd HILIWOHIT1ADIV
ONILIBHO

S3ITVIWONY
ol X ol HOJ AHLIWOIO NOIDIH AIAHNS TVIOT/HILIWOIQYHD

AD31lVHlS




(W) NOILNT0S3Y (ut) NOILNTOS3Y

00Z 0SsL 00t 0% 00z 0S1 001 0S
- Lo’ -— coo’
HOowH3 ,_ | r LI T ! ! {
NOILISOd u\mA ¥2018 o} HO4 OO0 ol ¥ HO4 T
LAOHLIM wl 0G :SINVWONY - o Houy 188w 6 :SINTVWONVY - o
Q103D O V o m  NOWLISOd OIS ALIAVHD 1HOINd V o W
1 8 LNOHLIM ] <
o 5
4 2
- W Ay Oﬁ0~ A
] o >
- 2
> <
HOYY3I & < ) .N
NODILISOd O/ Z 1 C <
z.:>m A Q z HOouY ) c
& 1 Q  NOILISOd J/S N i z
X 4 .
u - I.P_;,,L‘TUI o4 ﬁ
2 \Net Jorr
] z aw >
u . u SRR ATIE +V‘/ m
sannn LA 19t § AUILG ML R\ 1 =<
M\ Bl KRV n A_Nﬁ Qung / 4 m
- - w
45
] )
SH3L3IW S'S ‘HOHYHI 'SOd 3LIMILVS »
sY/SVIW | :3LVH F1JNVS o
3¢-01 NOISIOIYd
¥313W0IaVHD
SAVQ 081 :NOLLYHNA NOISSIW o
wy 094 :3IONLILIV »
HYI04/BYINDYID o
11840
‘SNOILANNSSY
NOILNT0S3Y

SA H313INO0IAVYYUD SIXV J3HHL ANV SIXVY INO V
404 ALNIVL1HY3IONN >._<S_e_< aio3d ANV ALIAVYD Y




® .

(W) NOILNTIOS3Y

0014 oSt

001

3aNLILIV WY 091 A

30N4LILTVY Wt 002 A

AL IS o~0/~.5

T

A0078 ol HOS
wd 0§ = S3INVINONY
Q1039 1HOIND V o

—

S0

o't

(wd) ALNIVIHIONN ATVINONV Q103D

0's

(W) NOILNTOS3YH

0sZ o00¢ ost 001

- 1 I ! |

A0078 ol V HOS

30N1LTV wy 091 1w 6 :S3INTVYWONV

~

6\+v.
e
30NLILIV WH00Z

o noedang kS

SH3ILIW S'S ‘HOHYI 'SOd 3L1NI3LVS »
st/SVIW | ‘ILVH ITdNVS o

Je-01 ‘NOISIO3Yd »

4313W0IQVHD

SAVQ 08t :NOLLYHNA NOISSIW o

w3 00Z 8w 091 IANLILIV o
HVYI10d/HVINDYID o

41940

‘SNOILdNNSSY

NOILNTOS3Y
SA H313IWWOIAVYHY SIXY 33HHL ANV SIXVY INO V
404 SIILNIVLIHIONN ATYIWONY AIOID ANV ALIAVHD

ALIAVHO HOIHd V »

LAl

lizi 13

A

llLll L1

o'i

(lebw) ALNIVLHIDONN ATVWONV ALIAVHO




® GEOID ANOMALY UNCERTAINTY FOR
. A ONE AXIS AND THREE AXIS GRAVITY

GRADIOMETER VS RESOLUTION

4 ASSUMPTIONS:

ORBIT
4.0 « CIRCULAR/POLAR
a0l * ALTITUDE: 200 km
* MISSION DURATION: 180 DAYS
GRADIOMETER
« PRECISION: 10-3€
 SAMPLE RATE: 1 MEAS/4S
e SATELLITE POS. ERROR: 5.5 METERS

1.0

WITH
S/C POSITION
ERROR 2

rlfll'

.
AW

GEOID ANOMALY UNCERTAINTY (cm)

.01

FTII_r

WITHOUT

* A PRIORI GEQID S/C POSITION
ANOMALIES: 50 cm ERROR
FOR 1° BLOCK

[ 4

0.01 | 1 I 1 -
50 100 150 200

RESOLUTION (km)
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PAPER TITLE: GRAVITY FIELD FINE STRUCTURE MAPPING USING A SPACEBORNE GRAVITY
GRADIOMETER

‘PE.AKERS NAME: Werner Kahn

Questions and Comments:
Alan Zorn: Have you considered the effects of local or near-field gradients
on your 10°2 E gradiometer, especially in a shuttle-based experiment?

« SPEAKERS RESPONSE: No - but it does need to be considered.

Dave Sonnabend: 1. GRM should be redesigned.
2. Gravity and other problems would drown out shuttle measurements.

A laser would improve GRM range-rate measurement, but other error sources
would limit the benefit. Concerns about the shuttle are well founded; but
we don't intend to do earth measurements from the shuttle. In a free
flyer, we have our work cut out to justify that we can live with these
problems.

Stan Jordan: For the GRM and satellite gradiometer missions, wha:t is the
track spacing of the orbit at the equator?

SPEAKERS RESPONSE: Speaker did not know off hand.

Lou Decker: What time frame is being considered for the Space Shuttle
Gravity Gradimeter Test?

PEAKERS RESPONSE: The initial flight test of a spaceborne Crvogenic Gravity
Gradiometer utilizing the space shuttle is projected for the early 1990°'s.
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SUPERCONDUCTING GRAVITY GRADIOMETER ON THE SPACE SHUTTLE

S. H. Morgan
J. R. Parker
Program Development
NASA, George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812
ABSTRACT
NASA 1s developing a highly precise Superconducting Gravity Gradiometer

through the efforts of a research group at the University of Maryland. By
providing very precise global mapping of the Earth's gravity field, this
gradiometer will be an important element of NASA's Earth Sciences Program
of the 1990s. The gradiometer utilizes superconducting technology to measure
verv small differential gravity signals in the presence of large accelerations
and/or disturbances. An engineering group at the Marshall Space Flight
Center, in conjunction with a study team composed of other NASA centers, the
U.S. Army, the U.S. Air Force, and the University of Maryland, has begun an
analysis to define an experiment to the flown aboard the Space Shuttle. The
objective of the analysis is to establish the feasibility and to provide data
for future detailed design of a Flight Experiment System. This paper contains
results to-date of the preliminary design of a Space Shuttle Flight of the

Superconducting Gravity Gradiometer.
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INFRARED TELESCOPE (IRT) DEWAR

(FLEW ON SPACELAB 2)

WEIGHT: (LBS)

INSTRYNENT

MOUNT

BgARE + DEWAR

AR
UM

HELTUM CAPACITY: 220 LITERS

PALLET +
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DEVELOPMENT OF SUPERCONDUCTING GRAVITY GRADIOMETER

FOR SPACE APPLICATIONS

‘ H. A. Chan
M. V. Moody
H. J. Paik
Dept of Physics and Astronomy
University of Maryland

College Park, Maryland -20742

ABSTRACT
Principles and Design of the Three—-Axis Superconducting Gravity Gradiometer

‘will be discussed. Status of construction and test will dbe reported.

_d




Development of a Superconducting Cravity
‘ Gradiometer for Space Applications

H.A.Chan, M.V.Moody , and H.I. Paik
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PAPER TITLE: DEVELOPMENT OF SUPERCONDUCTING GRAVITY GRADIOMETER FOR
SPACE APPLICATIONS

.PEAKERS NAME: Vol Moody

»

Questions and Comments:

Warren Heller: 1. 1Is the common mode acceleration signal output from the
gradiometer available?
2. Have you performed an analysis, relating the dimensional tolerances of

the six-axis proofmass to the expected level of cross axis error coefficients
expected?

SPEAKERS RESPONSE: 1. Yes, there is a redundancy in the detection of
linear acceleration with the gradiometer and the accelerometer.

2. No, we expect cross coupling. The coefficients will be measured and
calibrated out using a six—axis shaker.
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PLATFORM REQUIREMENTS AND ERROR COMPENSATION FOR A SUPERCONDUCTING

GRAVITY GRADIOMETER

H. J. Paik
Dept of Physics and Astronomy
University of Maryland
College Park, Maryland 20742
ABSTRACT
'—___—Ezahirements of the platform for 10~% E Hz~1/2 gradiometer will be discussed.
Platform stabilization and error compensation by use of a six—axis superconducting

accelerometer and a six-axis shaker will be discussed.
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PAPER TITLE: PLATFORM REQUIREMENTS AND ERROR COMPENSATION FOR A SUPERCONDUCTING
GRAVITY GRADIOMETER.

SPEAKERS NAME: Ho Jung Paik
‘Questions and Comments:

Alan Zorn: You promised earlier to discuss the effect of self-gradients on
a satellite-based cryogenic-gradiometer with 10-3 g/nz1/2 accuracy. Is this
a good time?

SPEAKERS RESPONSE: Yes, self-gradients contribute a DC effect, and we do not
» consider them.

Alan Zorn: But, self-gradients are not constant (eg-outgassing, transfer of
mass within helium cooling system, etc) and would certainly appear at 10-3
E/(nz)l/z

SPEAKERS RESPONSE: We can locate such moving items far from the sensing
elements. We have been assured that the helium cooling system will not
affect such accuracy. The next speaker may be willing to further expound on
this question.

Warren Heller: Please comment on the practicality of your requirement'to
control jitter to 10713 rad (or even 1010 _ 1ess stringent case).

SPEAKERS RESPONSE: With the co-rotating scheme that I proposed, the angular
stability of the dewar should be very good. Our angular accelerometer can

be tuned to measure angular acceleration down to 1013 rad/szl(Hz 172, por
10~4 E/ﬂzl/z, the required angular velocity sensitivity is 4x10~1 rad/s/Hz1/2
for the worst case which is for a local geographic orientation. This will be
no problem for our angular accelerometer.
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TLC FOR A MAGNETICALLY FLOATED GRAVITY GRADIOMETER
D. Sonnabend
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109
ABSTRACT
The proposed NASA Gravity Gradiometry Mission, a very low altitude satellite,
carrying a cryogenic gradiometer under development at the University of Maryland,
‘poses some unique technical challenges. Like some other highly sensitive inertial
instruments, this one can deliver its promised performance only in orbit, and thus
cannot be fully tested in the laboratory. Even in orbit we face problems from vibra-
tion, acceleration, rotation, and local gravity noise. OQur approach to this is based
on a magnetic isolation system, under development at JPL, and in cooperation with
other efforts at Marshall and Goddard. The paper will discuss how we will float the
whole experimental dewar, and measure the instrument's altitude and operating

parameters.
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COMMON MODE BALANCING GRADIOMETER WITH MONOCRYSTALLINE SILICON SUSPENSION
FOR HIGH SENSITIVITY GRAVITY MEASUREMENTS
Jean-Paul Richard
Department of Physics and Astronomy
University of Maryland
College Park, Maryland 20742

ABSTRACT

Noise in a room temperature gradiometer with a new low frequency common mode
balancing monocrystalline silicon suspension and laser instrumentation is analyzed.

.The potential sensitivity as limited by the noise associated with damping in silicon

and interferometric position sensing is projected at 2x10~4 Eotvos/ Hz1/2,
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PAPER TITLE: COMMON MODE BALANCING GRADIOMETER WITH MONOCRYSTALLINE
SILICON SUSPENSION POR HIGH SENSITIVITY GRAVITY MEASUREMENTS

SPEAKERS NAME: Jean-Paul Richard
&xestions and Comments:

Dave Sonnabend: Don't use invar for your structure, magnetostrictive strain
* is worse than temperature strain in routine materials.

Andrew Lazarewicz: With such a high Q, isn't your bandwidth very narrow?

o SPEAKERS RESPONSE: The mechanical Q is sharp, so is the mechanical bandwidth
narrow. The instrument bandwidth is not limited by the mechanical bandwidth.
Note that both signal and noise is amplified within the mechanical bandwidth,
8o S/N may not be improved (notable exception: shot noise). 1In fact, most
gravitational signals of interest are outside the mechanical bandwidth in
question.

Jim Faller: Why not measure the length of the bar with an independent laser
& thereby take out (servo out) temp-effects: Servo to keep fixed & then
measure distance with a laser to "measure"” gradients.




LIQUID-SUPPORTED TORSION BALANCE AS GRADIOMETER
J. E. Faller
P. T. Keyser
Joint Institute For Laboratory Astrophysics
University of Colorado
Boulder, Colorado 80309
ABSTRACT
We employ a liquid-supported torsion balance as a fixed-site long-term curvature
.variometer. The traditional fiber is replaced by liquid support and electrostatic
positioning. Thus the torsion constant is adjustable by varying the voltage applied
to the torque electrodes, while the centering voltage remains constant. The
sensitivity of this type of gradiometer will be discussed, along with critical

parameters for success. Preliminary data will be presented.




Liquid-Supported Torsion Balance as Gradiometer

P. T. Keyser and J. E. Faller
Joint Institute for Laboratory Astrophysics,
University of Colorado and National Bureau of Standards,

Boulder, Colorado, 80309-0440

We employ a liquid-supported torsion balance as a fixed-site long-
term curvature variometer. The traditional torsion fiber is replaced by
liquid support and electrostatic positioning. Thus the torsion constant
is adjustable by varying the voltage applied to the torque electrodes,
while the centering voltage remains constant. The sensitivity of this
type of gradiometer will be discussed, along with critical parameters

for success. Preliminary data will be presented.

The world's first gradiometers were the fiber-supported torsion
balances (FSTB's) used by Baron Roland von E3tv8s in the late nineteenth
century.1 A wide variety of supported mass configurations were devel-
oped (the two basic ones are shown in Figure 1) and such torsion balance
gradiometers were used in geophysical research through about 1940, at
which time gravimeters replaced them.? Torsion balances themselves were
invented in the late eighteenth century and have been, and still are,
used in a variety of applications for measuring very small forces. In

our own work on the Einstein Equivalence Principle we have constructed,




"
I ‘ﬁ%
—1m I
-Tm i
1 4
-145m
i 445
F] J @

=3

(Gradiometer) (Curvature Variometer)
FIGURE 1.

Baron Roland von R3ctv8s' FSTB Gradiometers (1896)
(Ref. 1, pp. 369-370] ‘




ostensibly as an auxiliary instrument, a pair of torsion balance gradio-
meters to monitor longterm (T = 1 day) changes in what may be loosely
called the "horizontal gravity gradients™ (more precisely: in the curva-
tures of the gravity level surface). However, due to the often bizarre
and always subtle problems associated with the use of fibers,3 and due
to our desire to increase the gsensitivity of the torsion balance, we
have used a radically different design. FSTB's have an inherently 1limi-
ted sensitivity to mass—dependent forces.as may be seen by noting that
the supported weight (test masses and beam) is proportional to the
cross—-sectional area of the fiber, while the observed angle is propor-
tional to the square of the area. This results in a maximum sensitivity
as determined by the fiber material (yleld strength versus elasticity)
and by the resolution of the detection systeam.

To overcome this sensitivity limit, the supportesd object can be
immersed in a liquid, to decrease the load on the fiber, as John Henry
Poynting first suggested.~ However, to completely avoid the use of
fibers, the recently-perfected liquid-supported torsion balance (LSTB)
uses an electrode array to provide the centering and restoring torque
usually provided by the fiber.® Our LSTB curvature variometer is pic-
tured in Figure 2. An advantage of this “electrostatic fiber™ 1is that
the voltage applied to the center electrode may be (and usually is) much
larger than that applied to the torque electrodes, which allows the cen-
tering and torquing forces to be effectively independent. (The force
between two electrodes is proportional to the square of the applied
voltage, and for spherical electrodes the force is almost in inverse
proportion to the gap between the upper and lower electrodes.) Further-

more, the torque voltage is readily adjustable so that we can, for
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FIGURE 2.
Schematic of our LSTB Gradiometer (1986)




example, let the system thermally equilibrate with high torque voltage
("stiff fiber”) and then simply lower the torsion constant to the cor-
rect value for critical damping (the optimum operating point). Similar-
ly, we can quickly establish the true "zero™ of the system so as to be
able to measure the dc curvature values. A polyatomic inert gas (such
as well-filtered N;) used as the fill gas maximizes the dielectric
strength of the electrode gaps and thus yields the maximum stiffness of
the electrostatic fiber.

In a LSTB there are only a few undesirable mechanical oscillation
modes, most of which have frequencies much higher than the torsional
oscillation frequency (T = 10 min), and all of which are rapidly damped
by the liquid. By contrast, FSTB's are plagued with a great number of
high-Q modes which readily couple to the torsion mode.® The bobbing
mode of a LSTB (T » 1 sec) has never been observed to couple, while the
oft-centering mode (T » 20 min) is rarely excited and is highly damped.
There are two tilting modes (T ~ 1 sec) onme of which (or both, if they
are degenerate) will of necessity couple to the torsion mode. This may
be most readily seen by noting that a book (held shut with a rubber
band) may be flipped into the air about any of three principal axes -
and about two of those the rotation is stable. About the axis with the

intermediate moment of inertia (or about the two axes of equal moments

of inertia) the motion is unstable.’ Due to various practical con-
straints, in any real LSTB the moment of inertia about the torsiomal
axis will always be smaller than the other two moments, and hence the
torsional osctllation is always stable. Moreover, the coupling of the
tilting mode(s) to the torsional mode only results in short episodes of

small high-frequency "noise” (and the tilt modes are rarely excited).




We use a transmission-optics variant of the Gauss optical lever as
our angle detection system. The infrared LED (noted in Figure 3) is a
point source and the lens is a (borosilicate galss) rod with its axis
vertical. The rays from the LED pass through the rod perpendicular to
its axis and are focused into a vertical line. The focal plane (i.e.,
the line image) is made to coincide with the plane of the split photo-
diode. The two currents generated in the photodiode halves are convert-
ed to voltages in low-current-noise preamplifiers and their sum and dif-
ference formed. The four sums and four differences are combined in ap-
propriate ways to generate radial translation (off-centering) and angu-
lar azimuth signals. The net gain is such that we have a measured sen-
sitivity of about 30 mV/arcsec, using 4.5 mA in the LED.

The second derivatives of U, the scalar gravity potential, form a
tensor, whose nine components are reduced by the constraints imposed by
the curl of g and the divergence of g to five linearly independent com-
ponents. Of these five we happen to be laterested only in those two
which correspond to masses near the instrument horizon, that is the two

curvature values. In fact the azimuthal torque on a LSTB is given by

(1) N = 1/2 sin(2a)(Ix'x' - Iy'y?)(Ugy - Uxy)

where a is the azimuth of the instrument relative to the axes of the
principal radii of curvaiure, Uxx and Uyy are the two principal cur-
vature values (so, e.g., Rx = g;/Uxx), and the 1's are the two
horizontal moments of inertia. Because of the symmetry of our float
this reduces to (along the sensitive axes which are at *45° to the line

joining the test masses):




Photodiode

(LED's and Photodiodes attached to tank, lenses attached to float)

FIGURE 3.

Schematic of Optical Position-Sensing System




(2) N = (ar?)(Ugy - Uxy)

where m is the mass of each test mass (2.935 kg) and r is its radius
(8.65 cm). For an external (point or spherical) mass M located on the
sensitive axis (x or y) at a distance R from the axis of the torsion

balance, we have for the torque

(3) ] N = (mar?)(26M/R3)

For our apparatus, with an external mass M = 150 kg at R = 2 m (corres-
ponding to U = 2,5 EU, 1 EU = 10-% sec™2) we find a torque of about 0.55
mdyne-cm. Our critically-damped torsion constant is 1.09 dyne-cm/rad
(at a voltage of about 55 V rms, electrode gap about 0.} in.), so that
the resultant angle is 0.50 mrad or 104 arcsec. This gives a sensitivi-
ty of over 40. arcsec/EU, or to put it another way the 2.5 EU signal is
over 40 times the rms noise (from all sources) in our apparatus.

The noise sources may be conveniently characterized as internal or
uncorrelated (i.e., uncorrelated with any external signal) and external
or correlated. Tests have shown that the external noise sources have a
very small effect.

The noise 1s observed to be insensitive to atmospheric pressure
(the tank is sealed and fairly rigid). We have carefully avoided mater-
ials (or inclusions) of high magnetic susceptibility, and we keep all
large magnets well away from the apparatus, so that the only significant
noise of magnetic origin is due to eddy currents produced by rotating

magnetic fields. It 18 quite possible to produce rotating fields of

sufficient frequency and intensity to cause the float to rotate (at up




to 1 rpm), and we do so on occasion, but the ordinary 60 Hz rotating
magnetic fields produced by lab motors have no observable effect. (In
addition, we have obtained 62-mil high-permeability MIL-N14411C 80%-Ni
magnetic shields which we plan to install.) Ordinary floor vibrations
(people jumping at R = 2 m, e.g.) have no observable effect, but large
earthquakes (as in Figure 4) or pathological (badly unbalanced) machines
(as in Figure 5) which produce large horizontal accelerations or large
tilts of the floor do have an effect. Such noise is intermitteat and
readily identifiable, and causes no real difficulty.

Internal nolse sources cause more difficulties, none insurmount-
able. The torque and center voltages are ac to avoild the possibility of
static charge accumulation (though all exposed surfaces of the float are
conducting and grounded, and tests with dc voltages never showed any ef-
fects attributable to static charge). The center voltage is regulated
to AV/V = 102 and the torque voltage to AV/V = 5x10~*. The (spurious)
change of angle, A9, that arises from a shift in torque voltage is
10~39. The observed (gaussian) voltage noise in the optical detection
gystem amounts to 15 mV (pp) - i.e., 0.5 arcsec.

The dominanrt noise sources are due to convection currents in the
liquid, which may arise either from impurity concentration gradients or

from thermal gradients. Nothing 1s more crucial to the success of a

LSTB than the elimination of these two problems.

Water 1is the universal solvent, and we go to great lengths to pur-
ify the water. We use: predefonization, followed by 5Sum filtration, UV
sterilization, | ym filtration, carbon filtration, deionization, and
0.22 ym filtration. All but the first stage are in a recirculating

system,
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Effects of Earthquakes on LSTB " ’
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The resistivity of acceptable water is 10 MR~cm (though in practice we
usually obtain 15 MQ-cm). Experience shows that it is necessary to add
a liquid non-ionic surfactant to the water to form a liquid surface mon-
olayer which displaces the otherwise inevitable solid surface layer
formed of residual (less than 1 ppm) impurities. We use Kodak Photoflo
2100 (not the premix Photoflo 200) or Triton X100, at about 500 ppm. In
addition it 1s crucial to protect the aluminum from corrosive attack by
the water. (Such attack is aggravated by dissolved oxygen, so we deoxy-
genate the water by bubbling filtered N, through 1it.) The main defense
that we use against this otherwise inevitable corrosion is the applica-
tion of a commercial chromate-conversion csating to the well-cleaned and
unetched aluminum (as per MIL-C5541).% We do not dissolve chromate fons
in the water (which has also been shown to prevent corrosion effective-
ly) as there is some indication that they react with our surfactants.
Without this protective coating the LSTB fails ("locks up” in a weak
surface gel) in about a week, but with the coating we can operate for
eight months or more.

Water is used because it is cheap, safe, readily purified, and be-
cause it alome of all liquids has a maximum density point:.9 Most therm—-
al convection currents in a gravity field are driven by buoyancy and
these bouyancy forces arise due to the temperature-dependent density of
the liquid (similar to the principle of the hot-air balloon). At 3.98
°C the expansion coefficient of water is zero — 8o that small thermal
gradients do not cause convection currents. There are five distinct
sources of thermal gradient forces on a float. Two of these forces
(which arise from the tewperature-dependance of the surface-tension and

the pressure) decenter the float and need not concern us here. The




other three forces (which are due to various types of convection cur-
rents) can torque the float. The dominant torquing convection current
is the circumferential current in the water between the vertical walls
of the float and tank. This is analogous to the “double-pane window”
problem, where the idea is to minimize the heat flux.!? Here however we
seek to minimize the convection (it can never go to zero unless the
temperature gradient or the width of the gap is exactly zero). In the
cagse of this circumferential current the maximum allowable AT (across

the tank) for a specified A8 (at critical damping) scales as:

(4) AT = (rp - )3

so that (all else being equal) we should minimize this gap.

We go to great lengths to insulate and control the temperature of
our apparatus. A multilayer cubical enclosure (alternating insulation
and reflective metal cans) three feet on a side surrounds the ome-foot
cylindrical tank. Around the innermost of these outer cans 1is wrapped
flexible hose through which temperature-controlled water flows. Around
this same can is wrapped a heater connected to a proportional-integral
controller (gain 120 dB, time constant 11000 sec, stability better than
0.1 w°C, resettabfility 1 @°C).!!  The temperature of this composite sys-
tem 13 set to give 4.0 * 0.1 °C at the waterline of the tank. (A seren-
dipitous effecc of operation at 4 °C is that the corrosive attack of
water is slowed by over two orders of magnitude from its rate at 20
°C.) The net effect 18 a stability of better than 0.5 m°C on the tank
over several days (Figure 6) and a sensitivity to room temperature fluc-

tuations of less than 2 m°C/°C. We believe, in spite of all this, that
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our dominant noise term is temperature-induced convection currents.

In Figure 7 we present sample data from a run with an identical
system in which the two masses were replaced with a disk (of the same
total mass and moment of inertia about z). In such a device no torque
should arise from curvatures and so any signal is “noise”™ - torques due
to floor vibrations (the 10-min period) or torques due to coavection
currents. Note that in two weeks (16 Jan to 1 Feb 1986) the “zero™ has
drifted almost 0.2 V or 0.4 arcsec/day or 0.01 EU/day. Some sample data
from the gradiometer system are presented in Figures 8 through 11. As
can be seen, a claimed sensitivity of 0.1 EU would not be amiss. The
drift rate in Figure 11 is less than 75 aV/day or 2.5 arcsec/day or
0.062 EU/day. (This drift was measured during a period we now have rea-
son to suspect marked the beginning of the degradation of the water, af-
ter eight months of operation. Before this it seemed to be about 5
times less, consistent with the data of Figure 7.) It must also be
noted that the response time is vastly slower than the various dynamic
gradiometers now available. In fact the damping time is alwmrst 20 min
(so that the response to a step will be 95X complete after about three
such times or one hour) which is about two orders of magnitude slower.

Future plans fnclude the construction of three new machined float-
and-tank sets (the current sets are modified spun-aluminum cook pots).
These new sets will have a 0.5 cm gap between the float and tank which
should reduce the effect of the convection currents by a factor of about
100, and thus floor vibrations and electronics, not convection, should
be the dominant noise sources. In addition, the larger tungsten—alloy
masses will be at a greater radius for a gain of a factor of 2.64 in

sensitivity to curvatures. The first set 18 ready and will be given a




preliminary test as sooun as the larger masses are ready.

> This work was supported by the National Bureau of Standards, the
Sensor-Technology Division of the Belvoir Research Development and Engi-
- neering Center, and the Air Force Geophysics Laboratory.
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PAPER TITLE: LIQUID-SUPPORTED TORSION BALANCE AS GRADIOMETER
‘SPEAKERS NAME: Paul T. Kevser

Questions and Comments:
¥ Peter Ugincius: Would your instrument be able to detect solid-earth tides?

SPEAKERS RESPONSE: Don't know. Depends on what Uxx* va are for solid-earth
tides. ’
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DEVELOPMENT OF A HIGH-SENSITIVITY, NON-CRYOGENIC GRAVITY GRADIOMETER
FOR SPACE-BORNE USE

x F. Fuligni*
E. C. Lorenzini

Smithsonian Astrophysical Observatory, Cambridge, MA 02138

3 F. Bordoni
B. V. Iafolla
*Istituto di Fisica dello Spazio Interplanetario, 00044 Frascati, Italy
ABSTRACT

The development of a one-axis, non-cryogenic gravity gradiometer is
described. The instrument presently developed at IFSI/CNR (Frascati, Italy)
consists of two displacement sensors, 50 cm apart in the instrument prototype.
Since the sensitive axes of the sensors are orthogonal to the baseline the
gradiometer measures the offline components of the gravity tensor. The proof

‘sses, rectangular in shape, are connected to the main frame by a crank
shaped attachment; every part being machined integrally from the same Al
plate which constitutes the rigid baseline of the instrument. Displacements
of each proof mass are measured by capacitive transducers whose outputs are
sent to an FET amplifier with noise temperature Tn = 100 mk. A feedback loop
provides a constant electric field on the moving plates, resulting in a
dynamic range enhancement and sensitivity increase. A sensitivity of the
order of 10~2 EU/HZI/Z is expected, sufficient to perform significant measurements
of the eartn's gravity field from a low orbit spacecraft such as TSS-2.
Results from preliminary laboratory tests of the instrument are also illustrated.
Abn the ground, more exhaustive tests will be performed jointly with the
Smithsonian Astrophysical Observatory by using a free fall technique in

“accuum in order to isolate the instrument from seismic and acoustic noise.
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PAPER TITLE: DEVELOPMENT OF A HIGH SENSTTIVITY, NON-CRYOGENIC GRAVITY GRAMTIOMETER

’PEAKERS NAME: Enrico Fuligni
‘Questions and Comments:

Dave Sonnabend: I don't believe nuisance dynamic angular rate in falling
® elevator can be measured to adequate accuracy.

-

‘SPEAKERS RESPONSE: Not sure.

warren Heller: Common mode acceleration must be measured and controlled o
one part in ten %o the ninth. I did not see that this issu» wias addressed.

Ho Jung Paik: 1. Your basic design involving only two proof masses makes
your device an angular accelerometer. At 10-2g level, you need to compensate
an angular acceleration to 10-11 rad s72. which gyroscope would vou use to
compensate this noise?

2. Even if there is no angular acceleration, there will be a centrifugal
acceleration due to angular velocity.

SPEAKERS RESPONSE: 1. There is no angular acceleration because the inszrumen:
will be tested in free fall.

2. The geometry of the instrument makes it insensitive to cenirifugal
acceleration.

Ho Jung Paik: That's not true. If you have an angular velocitv 45° away
q;om the baseline, you will be sensitive to the centrifugal acceleration,
is will be true even if you emplov 4 masses as Metzger does. It has been
proven that the centrifugal acceleration cannot be taken out, even in principle
in a second-order gradiometer, without stabilizing the platform.




